Video Lecture D3: Determinants,

 column operations, \& productsTom Roby

Outline \& Objectives

- Analyze how column operations affect the $\operatorname{det} A$ via $\operatorname{det} A^{T}=\operatorname{det} A$.
- Prove that $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$ and apply it in theory and practice.

Taking transposes leaves $\operatorname{det} A$ unchanged

Theorem (Determinant of a transpose)

For any $A \in \mathbb{R}^{n \times n}, \operatorname{det} A^{T}=\operatorname{det} A$.
Proof: \because Laplace expansion works along any row or any column.

Corollary

Let $A \in \mathbb{R}^{n \times n}$.
(1) Rescaling a column of A by k rescales $\operatorname{det} A$ by k.
(2) Interchanging two columns of A changes the sign of $\operatorname{det} A$.
(3) Adding a multiple of one col to another leaves $\operatorname{det} A$ unchanged.

$$
\left|\begin{array}{rrr}
-1 & 5 & 2 \\
3 & 1 & -6 \\
2 & 6 & -4
\end{array}\right|=\left|\begin{array}{rrr}
-1 & 5 & 0 \\
3 & 1 & 0 \\
2 & 6 & 0
\end{array}\right|=0 .
$$

Determinants of Matrix Products

Theorem (Determinant of product is product of dets)

For any two (square) $A, B \in \mathbb{R}^{n \times n}$, $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$.

Proof Sketch: Claim: $\operatorname{det} A=0 \Longrightarrow \operatorname{det} A B=0$.
$\because A$ not invertible $\Longrightarrow A B$ not invertible. (Similar if $\operatorname{det} B=0$.)
Claim: If E is elementary matrix, then $\operatorname{det} E B=(\operatorname{det} E)(\operatorname{det} B)$.
If A invertible, then $A \sim I_{n} \Longrightarrow A=E_{\ell} E_{\ell-1} \cdots E_{1} I_{n}$. Then
$|A B|=\left|E_{\ell} \cdots E_{1} B\right|=\left|E_{\ell}\right| \cdot\left|E_{\ell-1} \cdots E_{1} B\right|=\cdots=$
$\left|E_{\ell}\right| \cdots\left|E_{1}\right||B|=\left|E_{\ell} \cdots E_{1}\right| B|=|A|| B \mid$.
Q1: Suppose $\operatorname{det} A^{5}=0$. Can A be invertible?
Q2: How does $\operatorname{det}(A B)$ compare with $\operatorname{det}(B A)$?
Q3: If $U \in \mathbb{R}^{n \times n}$ satisfies $U U^{T}=I$, what can we say about $\operatorname{det} U$?

