Video Lecture B11: The Rank of a Matrix

Tom Roby

MATH 2210Q (Appl. Lin. Alg.)

VL B-11: rank A (Tom Roby)

1 / 5

Outline & Objectives

- Define the *row space*, Row *A*, of a matrix *A*, and analyze how row operations affect it.
- Define the *rank*, rank $A := \dim \operatorname{Col} A$, of a matrix A and prove that it is the same as $\dim \operatorname{Row} A$.
- Prove *The Rank Theorem* aka *The rank-nullity theorem*, which says that

 $\operatorname{rank} A + \operatorname{dim} \operatorname{Nul} A = n$

The Row Space of a Matrix

Definition (Row space of A)

For any $A \in \mathbb{R}^{m \times n}$, let $\operatorname{Row} A := \operatorname{Span}\{all \text{ rows of } A\} \subseteq \mathbb{R}^n$. Equivalently, $\operatorname{Row} A = \operatorname{Col} A^T$.

$$A = \begin{bmatrix} 1 & 2 & -3 & -2 & 3 \\ 2 & 5 & -8 & 1 & 2 \\ 1 & 1 & -1 & -7 & 7 \\ 2 & 4 & -6 & -1 & 3 \end{bmatrix} \sim B = \begin{bmatrix} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Theorem

Suppose $A \stackrel{\text{row}}{\sim} B$. Then $\operatorname{Row} A = \operatorname{Row} B$. If B is in RREF, then the nonzero rows of B form a basis for $\operatorname{Row} B$.

What would be a basis for $\operatorname{Col} A$ above?

For $\operatorname{Row} A$, must use the rows of B, not of A (cf. for $\operatorname{Col} A$).

MATH 2210Q (Appl. Lin. Alg.)

VL B-11: rank A (Tom Roby)

Rank

Definition (Rank of a matrix)

```
Define the rank of A \in \mathbb{R}^{m \times n} to be dim Col A.
```

Theorem (The Rank Theorem)

For $A \in \mathbb{R}^{m \times n}$, dim Row $A = \dim \operatorname{Col} A = \operatorname{rank} A = \#$ pivots in A. Also, rank $A + \dim \operatorname{Nul} A = n = \#$ columns of A.

Pf: Each column of A either contains a pivot (corresponding to a basis vector of $\operatorname{Col} A$) or corresponds to a free variable (corresponding to a basis vector of $\operatorname{Nul} A$).

```
What can you say about dim Nul A for A \in \mathbb{R}^{5 \times 11}?
```

An engineer has found five solutions to a homogenous system of 50 equations in 54 variables. If none of her solutions is a linear combination of the other four, can she be sure that she can solve any inhomogenous system with the same coefficients?

4 / 5

Additions to the Invertible Matrix Theorem

Theorem

For any square matrix $A \in \mathbb{R}^{n \times n}$ TFAE (The Following Are Equiv.):

- A is invertible.
- **2** A is row-equivalent to I_n .
- 3 A has n pivot positions.
- **(4)** $A\vec{x} = \vec{0}$ has only the trivial soln. $\vec{x} = \vec{0}$.
- **6** Columns of A are linearly independent.
- **6** $A \mapsto A\vec{x}$ is one-to-one.
- **(** Θ Cols (or rows) of A are basis for \mathbb{R}^n .
- $\textcircled{b} \operatorname{Col} A = \mathbb{R}^n.$

 $\texttt{IO} \dim \operatorname{Col} A = n.$

8 $\forall b \in \mathbb{R}^n$, $A\vec{x} = b$ has ≥ 1 soln.

- **9** $A \mapsto A\vec{x}$ is onto.
- **(1)** Columns of A span \mathbb{R}^n .
- $\textcircled{1} \exists C \in \mathbb{R}^{n \times n} \text{ such that } CA = I_n.$
- \square $\exists D \in \mathbb{R}^{n \times n}$ such that $AD = I_n$.
- \blacksquare A^T is invertible.
- \bigcirc rank A = n.
- $\textcircled{10} \operatorname{Nul} A = \{ \vec{0} \}.$
- $\textcircled{10} \dim \mathrm{Nul} = \mathbf{0}.$

MATH 2210Q (Appl. Lin. Alg.)

VL B-11: rank A (Tom Roby)

5 / 5