1. Give a careful proof by induction that for every positive integer \(n \)

\[
1^2 + 3^2 + 5^2 + \cdots + (2n - 1)^2 = \frac{n(2n - 1)(2n + 1)}{3}
\]

For the base case \(n = 1 \) we get LHS=1² = 1 and RHS= \(\frac{1(1)(3)}{3} = 1 \), so the equation holds.

Now suppose the equation holds for some \(k \in \mathbb{Z}^+ \), i.e.,

\[
1^2 + 3^2 + 5^2 + \cdots + (2k - 1)^2 = \frac{k(2k - 1)(2k + 1)}{3}
\]

We want to show it holds also for \(k + 1 \). We have

\[
1^2 + 3^2 + 5^2 + \cdots + (2k + 1)^2 = 1^2 + 3^2 + 5^2 + \cdots + (2k - 1)^2 + (2k + 1)^2
\]

\[
= \frac{k(2k - 1)(2k + 1)}{3} + (2k + 1)^2
\]

\[
= \frac{k(2k + 1)(2k + 1) + 3(2k + 1)^2}{3}
\]

\[
= \frac{(2k + 1)[k(2k - 1) + 3(2k + 1)]}{3}
\]

\[
= \frac{(2k + 1)[2k^2 - 5k + 3]}{3}
\]

\[
= \frac{(2k + 1)((k + 1)(2k + 3))}{3}
\]

\[
= \frac{(k + 1)(2k + 1)(2k + 3)}{3}
\]

where the first second equality uses the induction hypothesis. Hence, the equation also holds for \(k + 1 \). So by the Principle of Mathematical Induction, the equation holds for every \(n \in \mathbb{Z}^+ \).

2. **PODASIP:** For any odd positive integer \(m \), the number of nonzero perfect squares in \(\mathbb{Z}_m \) is \(\frac{m-1}{2} \).

This is *false*. A counterexample is \(n = 9 \), where there are three nonzero perfect squares: \(1^2 = 1, 2^2 = 4, 4^2 = 7 \). (The others are duplicates of these or are zero.) But \(\frac{n-1}{2} = 4 \neq 3 \).

SALVAGES: (1) True if \(n \) is (an odd) prime (Ex. #3.57 from the HW); (2) True in general that the number of nonzero perfect squares is \(\leq \frac{n-1}{2} \). (Since \(a^2 \equiv (-a)^2 \equiv (n-a)^2 \) (mod \(n \).)
3. **PODASIP:** For any \(a \in \mathbb{Z} \) and any positive prime \(p \), we have
\[
a^{p-1} \equiv 1 \pmod{p}
\]
This is false: take \(a = 0, p = 3 \) (or any \(p \)). Then \(a^{p-1} = 0 \) not 1.

SALVAGE: True if \(p \nmid a \) (equivalently if \(a \not\equiv 0 \pmod{p} \)).

Proof. See your class notes or the text, Theorem 3.42 (Fermat’s Little Theorem).

4. (a) State carefully the definition of \(\varphi(m) \), where \(m \) is a positive integer. (Do not give a formula for computing it.)
\[
\varphi(m) := \#U_m, \text{ or } \varphi(m) = \{1 \leq a \leq m : (a, m) = 1\}.
\]
(b) Working directly from this definition proof that
\[
\varphi(m) = m - 1 \iff m \text{ is prime.}
\]

(\(\Leftarrow \)) If \(m \) is prime, then it has no positive factors besides 1 and itself, for \((a, m) = 1 \) for every \(1 \leq a \leq m - 1 \). Hence, by definition, \(\varphi(m) = m - 1 \).

(\(\Rightarrow \)) Conversely, if \(m \) is not prime, then it has a factorization \(m = ab \) where \(1 < a, b < m \). For these elements we have \((a, m) = a \neq 1 \) and \((b, m) = b \neq 1 \), so there are at least two elements strictly between 1 and \(m \) which are not relatively prime to \(m \), so by definition \(\varphi(m) \leq m - 3 \).

5. Numerical & Computational problems

(a) Expand \(\left(x + \frac{1}{x}\right)^6 \). By the binomial expansion this is
\[
x^6 + \binom{6}{1}x^5x^{-1} + \binom{6}{2}x^4x^{-2} + \binom{6}{3}x^3x^{-3} + \binom{6}{4}x^2x^{-4} + \binom{6}{5}x^1x^{-5} + x^{-6}
= x^6 + 6x^4 + 15x^2 + 20 + \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{x^6}
\]

(b) Compute \(2^{327} \pmod{51} \). We use the Fermat-Euler theorem. Since \(51 = 3 \cdot 17 \), \(\varphi(51) = 2 \cdot 16 = 32 \). Hence,
\[
2^{327} = (2^{32})^{10} \cdot 2^7 \equiv (1)^{10} \cdot 2^7 = 128 \equiv 26 \pmod{51}.
\]
(c) Simplify \(\frac{2\sqrt{3} + 3\sqrt{2}}{\sqrt{3} + \sqrt{2}} \).

\[
\frac{2\sqrt{3} + 3\sqrt{2}}{\sqrt{3} + \sqrt{2}} = \frac{2\sqrt{3} + 3\sqrt{2}}{\sqrt{3} + \sqrt{2}} \cdot \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{2 \cdot 3 - 2\sqrt{6} + 3\sqrt{6} - 3 \cdot 2}{3 - 2} = \sqrt{6}.
\]

(d) Compute the following (without a calculator!):

\[
9^7 + 7 \cdot 9^6 + 21 \cdot 9^5 + 35 \cdot 9^4 + 35 \cdot 9^3 + 21 \cdot 9^2 + 7 \cdot 9
\]

By the binomial theorem, this is \((9 + 1)^7 - 1 = 10^7 - 1 = 9,999,999\).

6. **True/False & Explain:** For each statement below, state whether it is true or false and give a convincing reason.

(a) \(\sqrt{3} + \sqrt{27} - \sqrt{48} \) is irrational.

False, since it equals \(\sqrt{3} + 3\sqrt{3} - 4\sqrt{3} = 0 \).

(b) The sum of a rational number and an irrational number is irrational.

True. Let \(r \in \mathbb{Q} \) and \(t \) be irrational. Suppose BWOC that \(r + t \in \mathbb{Q} \). Then since \(\mathbb{Q} \) is closed under taking multiplication and addition, \((t + r) + (-1)r\) is rational \(\implies t \) is rational, contradiction. Hence, \(r + t \) must be irrational.

(c) For \(0 \leq k \leq n \) we have

\[
\binom{n}{k} = \binom{n}{n - k}.
\]

True. This is the symmetry in the Pingala-Khayyam-YangHui-Pascal Triangle. Best proof is to notice that selecting a subset \(S \) of \(k \) elements from the set \(\{1,2,\ldots,n\} \) is equivalent to selecting \(n - k \) elements NOT to be in the set (i.e., selecting \(S^c \)). It can also be shown from the formula as in the text, Prop. 4.31.

(d) If \(x \equiv a \pmod{m} \) and \(x \equiv a \pmod{n} \), then \(x \equiv a \pmod{mn} \).

False. \(5 \equiv 35 \pmod{6} \) and \(5 \equiv 35 \pmod{10} \), but \(5 \not\equiv 35 \pmod{60} \).

SALVAGE: True if \((m,n) = 1\).

Proof. By hypothesis we have \(m \mid x - a \) and \(n \mid x - a \). Since \((m,n) = 1\), this implies that \(mn \mid x - a \implies \), which is what we want to show.

7. Make sure you know how to prove the following facts from the text.
(a) Every integer $n > 1$ can be written as a product of primes (not necessarily uniquely). [Via strong induction.]

(b) For $1 \leq r \leq n$

\[
\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}
\]

(c) (Euler-Fermat) If m is a positive integer and $(a, m) = 1$, then

\[
a^{\phi(m)} \equiv 1 \pmod{m}.
\]

(d) There are numbers which are not rational.