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1. Introduction

When multiplication is commutative, a product of two squares is a square: x2y2 = (xy)2.
A more profound identity is the one which expresses a sum of two squares times a sum of
two squares as another sum of two squares:

(1.1) (x2
1 + x

2
2)(y

2
1 + y

2
2) = (x1y1 − x2y2)2 + (x1y2 + x2y1)2.

There is also an identity like this for a sum of four squares:

(x2
1 + x

2
2 + x

2
3 + x

2
4)(y

2
1 + y

2
2 + y

2
3 + y

2
4) = (x1y1 − x2y2 − x3y3 − x4y4)2 +(1.2)

(x1y2 + x2y1 + x3y4 − x4y3)2 +
(x1y3 + x3y1 − x2y4 + x4y2)2 +
(x1y4 + x4y1 + x2y3 − x3y2)2.

These are polynomial identities, so they are valid when we substitute for the variables
elements of any field (or, for that matter, elements of any commutative ring).

In the 19th century, after the 4-square identity (1.2) was popularized by Hamilton in his
work on quaternions (it had been found by Euler in the 18th century but then forgotten),
Cayley discovered a similar 8-square identity. In all of these sum-of-squares identities, the
terms being squared in the product are all bilinear expressions in the x’s and y’s: each such
expression, like x1y2 +x2y1 for sums of two squares, is a linear combination of the x’s when
the y’s are fixed and a linear combination of the y’s when the x’s are fixed.

It was natural for mathematicians to search for a similar 16-square identity next, but they
were unsuccessful. At the end of the 19th century Hurwitz [4] proved his famous “1,2,4,8
theorem,” which says that further identities of this kind are impossible.

Theorem 1.1 (Hurwitz, 1898). Let F be a field of characteristic not equal to 2. If

(1.3) (x2
1 + · · · + x

2
n)(y2

1 + · · · + y
2
n) = z

2
1 + · · · + z

2
n

for all x1, . . . , xn, y1, . . . , yn in F, where each zk is an F-bilinear function of the x’s and the

y’s, then n = 1, 2, 4 or 8.

Hurwitz’s original proof was stated for F = C, but the field of scalars only needs to be of
characteristic not equal to 2 for his proof to work. Nothing would be lost if you take F = C
in the rest of this discussion. (What if the field F has characteristic 2? Then there is an
identity as in (1.3) for all n because a sum of squares in characteristic 2 is again a square.)

To prove Theorem 1.1, we first show in Section 2 that the existence of a bilinear formula
like (1.3) leads to a set of equations in n × n matrices over F . Then we show by two
different methods that the matrix equations can be solved only when n = 1, 2, 4, or 8. The
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first method, in Section 3, will involve a linear independence property of certain matrix
products, and is a simplified version of Hurwitz’s original argument. Our treatement is
based on [6]. The second method, in Section 4, will use representation theory. This method
is due to Eckmann [2] (see also [3, pp. 141-144]). Sections 3 and 4 can be read independently
of each other. As an application of Hurwitz’s theorem, we show in Section 5 that the only
Euclidean spaces which can admit a multiplication resembling the usual vector cross product
are R (a degenerate case, it turns out), R3, and R7.

While Hurwitz proved only the dimension constraints n = 1, 2, 4, and 8, it is also the case
that, up to a linear change of variables, the only sum of squares identities in these dimen-
sions are the ones associated to multiplication in the four classical real division algebras of
dimensions 1, 2, 4, and 8: the real numbers, complex numbers, quaternions, and octonions.
For a proof of this more precise result, see [5, §7.6] or [6, Appendix, Chap. 1]. Readers
unfamiliar with algebra in the quaternions and octonions can look in [1].

2. The Hurwitz Matrix Equations

Lemma 2.1. Let V be a finite-dimensional vector space over F , where F does not have

characteristic 2. If there is a pair of invertible anti-commuting linear operators on V , then

dim V is even.

Proof. Suppose L, L� : V → V are linear, invertible, and LL� = −L�L. Taking the determi-
nant of both sides, (det L)(detL�) = (−1)dim V (detL�)(detL). Since L and L� have non-zero
determinants, 1 = (−1)dim V in F , so dimV is even since the characteristic of F is not 2. �

We return to (1.3). That zk is a bilinear functions of the x’s and y’s means

(2.1) zk =
n�

i,j=1

aijkxiyj

for some aijk ∈ F . For example, in the case n = 2 we see by (1.1) that we can use

(2.2) z1 = x1y1 − x2y2, z2 = x1y2 + x2y1.

We can collect the two equations in (2.2) as components of the equation
�

z1

z2

�
=

�
x1y1 − x2y2

x1y2 + x2y1

�

=
�

x1 −x2

x2 x1

� �
y1

y2

�

=
�

x1

�
1 0
0 1

�
+ x2

�
0 −1
1 0

�� �
y1

y2

�
.

From (1.2), in the n = 4 case we can use

z1 = x1y1 − x2y2 − x3y3 − x4y4,

z2 = x1y2 + x2y1 + x3y4 − x4y3,

z3 = x1y3 + x3y1 − x2y4 + x4y2,

z4 = x1y4 + x4y1 + x2y3 − x3y2,
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so 



z1

z2

z3

z4



 = (x1A1 + x2A2 + x3A3 + x4A4)





y1

y2

y3

y4



 ,

where A1, A2, A3, and A4 are 4× 4 matrices with entries 0, 1, and −1. For example,

A1 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 , A2 =





0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0



 .

The reader can work out A3 and A4.
Such matrix equations can be developed in the n×n case too. The scalar equation (2.1)

for k = 1, . . . , n is the same as the single equation



z1
...

zn



 =





�
i,j aij1xiyj

...�
i,j aijnxiyj



(2.3)

=





�
j (

�
i aij1xi) yj
...�

j (
�

i aijnxi) yj





=





�
i ai11xi . . .

�
i ain1xi

... . . . ...�
i ai1nxi . . .

�
i ainnxi








y1
...

yn



 .

The n× n matrix in the last expression can be expressed as a sum of n matrices, each one
containing only one xi which can then be pulled out as a coefficient:

x1




a111 . . . a1n1

... . . . ...
a11n . . . a1nn



 + · · · + xn




an11 . . . ann1

... . . . ...
an1n . . . annn



 .

This sum can be written as x1A1 + · · ·+xnAn, where Ai is an n×n matrix with (j, k)-entry
aikj . (Why the index reversal on the subscripts? That is in the nature of how matrix-vector
multiplication works: look at the n = 2 case to convince yourself in a concrete case that
this index reversal is not an error.) Now (2.3) reads as

z = (x1A1 + · · · + xnAn)y = Axy,

where we set Ax = x1A1 + · · · + xnAn.
With this notation, the right side of (1.3) is

z
2
1 + · · · + z

2
n = z · z

= Axy · Axy
= (A�

x Axy) · y
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The left side of (1.3) is ��
x

2
i

�
y · y =

���
x

2
i

�
y
�
· y.

Therefore
(A�

x Axy) · y =
���

x
2
i

�
y
�
· y.

Comparing the two sides as y varies shows (since F has more than 2 elements)

(2.4) A
�
x Ax =

��
x

2
i

�
In.

Expanding the left side of (2.4) using Ax = x1A1 + · · · + xnAn, we have

A
�
x Ax =

n�

i=1

�
A
�
i Ai

�
x

2
i +

�

1≤i<j≤n

�
A
�
i Aj + A

�
j Ai

�
xixj ,

so (2.4) is equivalent to the system of matrix equations

(2.5) A
�
i Ai = In, A

�
i Aj + A

�
j Ai = O for i < j.

These are the Hurwitz matrix equations. (The actual entries in the Ai’s won’t matter
anymore.) The rest of the proof of Theorem 1.1 is now devoted to showing these equations
in n × n matrices can exist only if n is 1, 2, 4, or 8. Without loss of generality we take
n > 2.

We normalize the matrices Ai to make one of them the identity, as follows. By (2.5), Ai

is an invertible matrix whose inverse is A�
i . Set

Bi = AiA
�
n .

Now (2.5) is easily seen to be equivalent to

(2.6) Bn = In, B
�
i Bi = In, B

�
i Bj + B

�
j Bi = O for i < j.

(We write i �= j rather than i < j to make things more symmetric; it doesn’t change
anything.) Taking j = n in the third equation shows B�

i = −Bi for i �= n. Therefore the
n− 1 matrices B1, . . . , Bn−1 satisfy

(2.7) B
�
i = −Bi, B

2
i = −In, BiBj = −BjBi for i �= j.

We see immediately from (2.7) and Lemma 2.1 that n is even. Next we will prove that
(2.7) for even n > 2 forces n = 4 or 8.

3. Conclusion via Linear Algebra

We will use a lemma about linear independence of certain matrix products. Let m be
a positive even integer and C1, . . . , Cm be matrices in some Md(F ) which are pairwise
anticommuting and each C2

i is a non-zero scalar diagonal matrix. (For instance, in the
notation of (2.7), we can use B1, B2, . . . , Bn−2 in Mn(F ). We take out Bn = In since it is
not anti-commuting with the other Bi’s, and we then take out Bn−1 because we need an
even number of anti-commuting matrices and n− 1 is odd.) While B2

i = −In for all i, for
the purpose of what we are going to do for now with these C’s, we don’t need to assume
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C2
i is the same scalar for all i.) From the m matrices C1, . . . , Cm, we get 2m products of

different terms. Specifically, for an m-tuple δ = (δ1, . . . , δm) ∈ {0, 1}m, set

C
δ = C

δ1
1 · · ·Cδm

m .

Note Ci is Cδ where δi = 1 and other δj ’s are 0. The number of different δ’s is 2m.

Lemma 3.1. With notation as in the previous paragraph, the 2m
matrices Cδ

are linearly

independent in Md(F ). In particular, 2m ≤ d2
when m is even.

In the course of the proof, the condition that m is even will only be needed at the very
end.

Proof. Suppose there is a non-trivial linear relation

(3.1)
�

δ

bδC
δ = O,

where the bδ ’s are in F and are not all 0. Take such a relation with as few non-zero
coefficients as possible.

First we show that we can assume b0 �= 0. Since the Ci’s anti-commute and square to a
non-zero scalar matrix, Cδ�

Cδ�
is a non-zero scalar matrix for any δ�. Moreover, as δ varies

and δ� is fixed,

{Cδ
C

δ�
: δ ∈ {0, 1}m} = {(non-zero scalar)Cδ : δ ∈ {0, 1}m}.

Therefore, picking δ� such that bδ� �= 0, multiplying (3.1) on the right by Cδ�
gives a linear

relation with the same number of non-zero coefficients as in (3.1) but now the coefficient
of C0 = Id is non-zero. We may henceforth impose this condition on the minimal relation
(3.1).

Now we use conjugations to show most terms in (3.1) are zero. By anti-commutativity,

CiCjC
−1
i =

�
Cj , if i = j,

−Cj , if i �= j.

Therefore

(3.2) CiC
δ
C
−1
i = ±C

δ
.

What is the exact recipe for the ± sign? It depends on how many coordinates in δ equal
1. For δ ∈ {0, 1}m, let its weight w(δ) be the number of i’s with δi = 1. For instance,
w(0) = 0. We get the more precise version of (3.2):

(3.3) CiC
δ
C
−1
i = εδ,iC

δ
,

where

(3.4) εδ,i =

�
(−1)w(δ), if δi = 0,

(−1)w(δ)−1, if δi = 1.

For instance, ε0,i = 1 for all i.
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Pick i from 1 to n and conjugate (3.1) by Ci. By (3.3), we get

(3.5)
�

δ

εδ,ibδC
δ = O.

Since ε0,i = 1, subtract (3.5) from (3.1) to get the linear relation

(3.6)
�

δ

(1− εδ,i)bδC
δ = O.

Here the coefficient of the term for δ = 0 is 0, while we arranged for it to be non-zero
in (3.1). Therefore (3.6) is a linear relation with fewer non-zero terms than the non-zero
relation of minimal length. Hence all terms in (3.6) vanish. That is,

δ �= 0, bδ �= 0 =⇒ εδ,i = 1.

This holds for every i from 1 to n, so each δ �= 0 with a non-zero coefficient in (3.1) has εδ,i

independent of i. Then δi is independent of i by (3.4), so δ = (1, 1, . . . , 1). Then w(δ) = m,
so εδ,i = (−1)m−1 = −1, since m is even. This is a contradiction since −1 �= 1 in F . We
have shown bδ = 0 for δ �= 0, but then the linear relation (3.1) has just one non-zero term,
which is impossible. �

Returning now to the setting of the proof of Theorem 1.1, apply Lemma 3.1 to the
matrices B1, . . . , Bn−2 in Mn(F ). (Recall n is even.) We conclude 2n−2 ≤ n2. It is easy to
see this inequality, for even n > 2, holds only for n = 4, 6, and 8. The possibility n = 6
in Theorem 1.1 will be eliminated by studying eigenspaces for B1. We will see that when
n > 4, n

2 is even, so n �= 6.
Consider the Bj ’s as linear operators on V := F

n, where F is an algebraic closure of F .
Since B2

j = −In, the eigenvalues of Bj are ±i = ±
√
−1.

Let �·, ·� be the standard inner product on V : �(a1, . . . , an), (b1, . . . , bn)� =
�n

k=1 akbk.
Since B�

j = −Bj , we have
�Bjv, w� = −�v, Bjw�

for any v and w in V . There is an eigenspace decomposition V = U ⊕W for the action of
B1, where

U = {v : B1v = iv}, W = {v : B1v = −iv}.
Since B1 is injective and U and W are eigenspaces, B1(U) = U and B1(W ) = W . Of
greater interest is that, for j = 2, 3, . . . , n − 1, Bj(U) = W and Bj(W ) = U . To see this,
it will suffice to show Bj(U) ⊂ W and Bj(W ) ⊂ U . (Then, by injectivity of Bj , we’d get
dim U ≤ dim W and dim W ≤ dim U , so these inequalities are equalities and Bj maps U

onto W and W onto U by the rank-nullity theorem.)
For v ∈ U ,

B1(Bjv) = −Bj(B1v) = −Bj(iv) = −iBjv,

so Bjv ∈ W . Thus, Bj(U) ⊂ W . That Bj(W ) ⊂ U is analogous. It follows, as noted
already, that dim U = dimW = n

2 .
Although the maps Bj (j > 1) send U to W and vice versa, we can get self-maps on one

of these subspaces by composition of each Bj with, say, B2. For j = 2, 3, . . . , n − 1, the
composite Cj = B2 ◦Bj is an invertible linear operator on U . For n > 4, a direct calculation
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shows that C3 and C4 are anti-commuting on U (as are Cj and Ck for any different j, k > 2).
This forces dim U to be even by Lemma 2.1. Thus 2|n2 , so 4|n. This eliminates the choice
n = 6 and concludes the first proof of Hurwitz’s theorem.

4. Conclusion via Representation Theory

Assuming n > 2 is even, we will derive n = 4 or 8 from (2.7) using representation theory.
Consider the group of matrices generated by the Bi’s. These consist of the matrix prod-

ucts
±B

a1
1 · · ·Ban−1

n−1 ,

where ai = 0 or 1. Note −In �= In since F doesn’t have characteristic 2.
Let G be a group generated by elements g1, . . . , gn−1 such that

(4.1) g
2
i = ε �= 1, ε

2 = 1, gigj = εgjgi for i �= j.

(The Hurwitz matrix equations, or rather their consequence in (2.6), led us to an example
of such a group.) Every element of G has the form

ε
a0g

a1
1 · · · · · gan−1

n−1 ,

where ai = 0 or 1. Also, if G exists then the subgroup {g1, . . . , gm} for 2 ≤ m ≤ n− 2 has
the same formal properties (4.1) as G, but with fewer generators. Note ε commutes with
all the gi’s, so ε ∈ Z(G).

We now show the following four facts:
(a) #G = 2n,
(b) [G, G] = {1, ε},
(c) If g �∈ Z(G), then the conjuagcy class of g is {g, εg},
(d) The evenness of n implies

Z(G) = {1, ε, g1 · · · gn−1, εg1 · · · gn−1}.
(a) Certainly #G ≤ 2n. We need to show that if

(4.2) ε
a0g

a1
1 · · · gan−1

n−1 = 1,

then all ai are even (or simply equal 0 if we assume, as we can, that ai = 0 or 1).
Well, if n− 1 = 2 and (4.2) holds with a2 = 1 then g2 is in the group generated by ε and

g1, hence in the group generated by g1 since ε2 = g1. That implies g2 commutes with g1,
which is not the case. So a2 = 0 and εa0g

a1
1 = 1. Since g1 has order 4, it doesn’t lie in the

2 element group generated by ε, so a1 = 0. Therefore a0 = 0.
Now assume n−1 > 2 and an−1 = 1. Multiplying each side of (4.2) by gn−1 on the right,

we move g2
n−1 = ε over to the ε term (since ε ∈ Z(G)) and get

ε
a�0g

a1
1 · · · gan−2

n−2 = 1,

where a�0 = 0 or 1 since ε has order 2. Since the group generated by ε, g1, . . . , gn−2 has the
same formal properties as G, we see by induction that

a1 = · · · = an−2 = 0.

Thus εa�0gn−1 = 1, so gn−1 ∈ {1, ε}, a contradiction.
(b) Since n − 1 ≥ 2, (4.1) gives g1g2g

−1
1 g

−1
2 = ε, so ε lies in [G, G]. Since ε ∈ Z(G), the

group G/{1, ε} is abelian by the defining properties of G, so [G, G] = {1, ε}.
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(c) This is obvious from b.
(d) An element g of G lies in the center if and only if ggi = gig for all i. Write

g = ε
a0g

a1
1 · · · gan−1

n−1 ,

where ai = 0 or 1. Then (using gigjg
−1
i = εgj)

ggi = gig ⇐⇒ ε
a0g

a1
1 · · · gan−1

n−1 = giε
a0g

a1
1 · · · gan−1

n−1 g
−1
i

⇐⇒ ε
a0g

a1
1 · · · gan−1

n−1 = ε

a0+
Pn−1

j=1
j �=i

aj

g
a1
1 · · · gan−1

n−1 .

Since ε has order 2, we see

g ∈ Z(G) ⇐⇒
n−1�

j=1
j �=i

aj ≡ 0 mod 2 for all i.

For i �= k, we get
n−1�

j=1
j �=i

aj ≡
n−1�

j=1
j �=k

aj mod 2,

so ai ≡ ak mod 2. Thus a1 = · · · = an−1, so g = εa0 or εa0g1 · · · gn−1. Hence

g ∈ Z(G) ⇐⇒ (n− 2)a1 ≡ 0 mod 2,

so Z(G) has the elements as indicated for n even. (That n is even was only used in the last
line. If instead n were odd, then Z(G) = {1, ε}.)

We now bring in representation theory. The original Hurwitz problem gave an n-
dimensional (faithful) representation of G over F , which we view as a representation over
the algebraic closure F . Which irreducible representations of G over F can occur in this n-
dimensional representation? Since F doesn’t have characteristic 2, the characteristic doesn’t
divide the order of G, so classical representation theory applies.

Since G/[G, G] has size 2n−1, G has 2n−1 representations of degree 1. The number of
representations equals the number of conjugacy classes. We already computed the conjugacy
classes of G, so we can read off the number of conjugacy classes. Since n is even, G has

4 +
1
2
(2n − 4) = 2n−1 + 2

conjugacy classes. (If n were odd, there would be 2 + 1
2(2n − 2) = 2n−1 + 1 conjugacy

classes.) Thus, for even n, G has two irreducible representations of degree greater than 1.
Let fi be the degrees of the irreducible representations of G over F . Since #G =

�
f2

i and
all fi divide #G (hence all fi are powers of 2), we see (since n − 1 > 1) that G has two
irreducible representations of degree 2

n
2−1

> 1 if n is even. (If n were odd, G would have
just one irreducible representation of degree 2

n−1
2 > 1.)

Our problem gave us an n-dimensional representation of G where ε is represented by
−In, hence by the negative of the identity map on any subspace. Since ε ∈ [G, G], it is sent
to 1 under all 1-dimensional representations. Therefore our n-dimensional representation
of G has no irreducible subrepresentations of degree 1. Thus, for even n > 2 we must have

2
n
2−1|n.
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Letting n = 2rs for r ≥ 1 and s odd, we have n
2 − 1 ≤ r, so

2r ≤ n ≤ 2r + 2.

This implies n = 4 or 8.

5. Vector products

We use the Hurwitz theorem to explore the following question: does the cross product
on R3 have an analogue on Rn for any n > 3? After we specify what properties we want
such a product to satisfy, we will see the choices are quite limited.

The multiplication on Rn should assign to any v and w in Rn a third vector in Rn, to
be denoted v × w. It is natural to insist that this product be R-bilinear in v and w:

(5.1) (v1 + v2)× w = v1 × w + v2 × w, v × (w1 + w2) = v × w1 + v × w2,

and

(5.2) (cv)× w = c(v × w), v × (cw) = c(v × w),

where c ∈ R. One consequence of bilinearity is that multiplication by 0 is 0:

(5.3) v × 0 = 0, 0× w = 0.

Let us also ask that the product be orthogonal to both factors: for all v and w in Rn,

(5.4) v · (v × w) = 0, w · (v × w) = 0.

This property is satisfied by the cross product on R3, thus motivating this condition. How-
ever, it is not satisfied by other kinds of products in linear algebra. For instance, matrix
multiplication on Md(R) = Rd2 is an R-bilinear product but (5.4) isn’t satisfied when v

and w are matrices, × means matrix multiplication, and · is the dot product on Md(R)
given by (aij) · (bij) =

�
i,j aijbij .

Lastly, we ask that the magnitude ||v × w|| be determined by the same formula which
works for the cross product in three dimensions:

(5.5) ||v × w||2 = ||v||2||w||2 − (v · w)2.

When n = 1, a product on Rn = R satisfying (5.5) must be identically zero. Indeed, the
dot product on R is the ordinary product, so (5.5) becomes |x× y|2 = x2y2− (xy)2 = 0, so
x× y = 0. So we only care about the case n > 1.

The assumption (5.5) looks more complicated than the earlier assumptions. The following
result expresses (5.5) in simpler terms, but it is in the form (5.5) that we will actually use
the assumption.

Theorem 5.1. Let × be a product on Rn
which satisfies (5.1), (5.2), and (5.4). Then (5.5)

is equivalent to the following two conditions together:

(1) for all v ∈ Rn
, v × v = 0,

(2) if ||v|| = 1, ||w|| = 1, and v ⊥ w, then ||v × w|| = 1.

Proof. It is easy to see that (5.5) implies the two conditions in the theorem. Now we assume
the two conditions and derive (5.5).

First suppose v and w are linearly dependent, say w = cv for some c ∈ R. Then

||v × w||2 = ||v × (cv)||2 = c
2||v × v||2 = 0
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and
||v||2||w||2 − (v · w)2 = c

2||v||4 − c
2(v · v)2 = c

2||v||4 − c
2||v||4 = 0,

so the two sides of (5.5) both equal 0.
Now suppose v and w are linearly independent. Let u = v − v·w

w·ww, so u · w = 0.
Then u/||u|| and w/||w|| are perpendicular unit vectors, so by assumption the product
(u/||u||)× (w/||w||) is a unit vector. By bilinearity, the unit length of this product implies

(5.6) ||u× w|| = ||u||||w||.
Since w × w = 0, u× w = v × w by bilinearity and (5.3). Squaring both sides of (5.6),

(5.7) ||v × w||2 = ||u||2||w||2

From the definition of u,

||u||2 = u · u

=
�
v − v · w

w · ww

�
·
�
v − v · w

w · ww

�

= v · v − 2
(v · w)2

w · w +
(v · w)2

w · w

= v · v − (v · w)2

w · w

= ||v||2 − (v · w)2

||w||2 .

Substituting this into (5.7) gives

||v × w||2 = ||v||2||w||2 − (v · w)2.

�
Theorem 5.2. For n ≥ 1, assume there is a multiplication × : Rn ×Rn → Rn

satisfying

(5.1), (5.2), (5.4), and (5.5). Then n = 1, 3, or 7.

We have seen the n = 1 case is quite dull, so the only interesting cases in Theorem 5.2
are 3 and 7.

Proof. We use the multiplication × on Rn to define a product, say ⊙, on Rn+1. Write
vectors in Rn+1 in the form (x, v), where x ∈ R and v ∈ Rn. Note that the dot product of
such vectors can be expressed in terms of dot products of the components:

(x, v) · (y, w) = xy + v · w.

For (x, v) and (y, w) in Rn+1, define

(5.8) (x, v)⊙ (y, w) = (xy − v · w, xw + yv + v × w).

This formula makes sense (even if it seems a bit mysterious) since xy − v · w ∈ R and
xw + yv + v × w ∈ Rn. While (1,0) is a 2-sided identity for ⊙, we won’t be using this
explicitly.

This product ⊙ on Rn+1 has two key properties. The first is that it is a bilinear function
of (x, v) and (y, w). That is, fixing one of these vector pairs in Rn+1, the right side of (5.8)
is a linear function of the other pair.
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The second key property of ⊙ is that it is multiplicative for lengths:

(5.9) ||(x, v)⊙ (y, w)||2 = ||(x, v)||2||(y, w)||2.
We verify this by writing the left side as a dot product and expanding:

||(x, v)⊙ (y, w)||2 = (xy − v · w, xw + yv + v × w) · (xy − v · w, xw + yv + v × w)
= (xy − v · w)2 + (xw + yv + v × w) · (xw + yv + v × w)

By (5.4), v ×w is orthogonal to xw + yv. Therefore (xw + yv + v ×w) · (xw + yv + v ×w)
equals

(xw + yv) · (xw + yv) + (v × w) · (v × w) = x
2||w||2 + 2xy(v · w) + y

2||v||2 + ||v × w||2.
Adding this to (xy − v · w)2 = x2y2 − 2xy(v · w) + (v · w)2 gives

||(x, v)⊙ (y, w)||2 = x
2
y

2 + (v · w)2 + x
2||w||2 + y

2||v||2 + ||v × w||2.
By (5.5), this simplifies to

||(x, v)⊙ (y, w)||2 = x
2
y

2 + x
2||w||2 + y

2||v||2 + ||v||2||w||2

= (x2 + ||v||2)(y2 + ||w||2)
= ||(x, v)||2||(y, w)||2,

so we have established (5.9).
Now we show the connection between ⊙ and Hurwitz’s theorem. Pick two vectors

(x1, . . . , xn+1) and (y1, . . . , yn+1) in Rn+1. Their ⊙ product is a third vector (z1, . . . , zn+1),
where the components are computed according to (5.8). Writing (5.9) with the terms moved
to opposite sides,

(5.10) (x2
1 + · · · + x

2
n+1)(y

2
1 + · · · + y

2
n+1) = z

2
1 + · · · + z

2
n+1.

This identity holds for all values of the variables, so it is a formal algebraic identity as well.
From the first key property of ⊙, the zk’s are bilinear functions of the xi’s and yj ’s. Thus,
(5.10) and Hurwitz’s theorem tell us n + 1 is 1, 2, 4, or 8, so n is 0, 1, 3, or 7. The case
n = 0 is discarded. �

Up to a linear change of variables, it can be shown that the only product on R3 satisfying
the conditions of Theorem 5.2 is the usual cross product. A product on R7 satisfying the
conditions of Theorem 5.2 can be constructed, but the details are somewhat tedious. See
[1, pp. 278–279].

Appendix A. Lemma 3.1 revisited

The linear independence conclusion of Lemma 3.1 continues to hold under a weaker
assumption than the Ci’s having scalar squares: invertibility is sufficient. However, the
proof becomes a little more involved, since we can’t reduce immediately to the case when
b0 �= 0. Here is the general result along these lines.

Theorem A.1. Let F be a field not of characteristic 2 and A be an associative F -algebra.

Suppose a1, . . . , am are m pairwise anticommuting units in A, where m is even. For δ ∈
{0, 1}m

, set

a
δ = a

δ1
1 · · · aδm

m .
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The 2m
products aδ

are linearly independent over F .

Proof. Let w(δ) be the number of i’s with δi = 1. Then

aiaja
−1
i =

�
aj , if i = j,

−aj , if i �= j,

so

(A.1) aia
δ
a
−1
i = εδ,ia

δ
,

where

εδ,i =

�
(−1)w(δ), if δi = 0,

(−1)w(δ)−1, if δi = 1.

Since w(δ), by definition, is the number of i’s such that δi = 1, we get a global constraint
linking the signs εδ,1, . . . , εδ,m:

(A.2)
m�

i=1

εδ,i = (−1)mw(δ)(−1)w(δ) = (−1)w(δ)
.

The last equality uses the evenness of m.
Suppose there is a nontrivial linear dependence relation among the aδ ’s, say

(A.3)
�

δ

bδa
δ = 0,

for some coefficients bδ ∈ F not all zero. Pick such a nontrivial relation with a minimal
number of nonzero coefficients. Fixing i between 1 and n, conjugate (A.3) by ai. By (A.1),
we get �

δ

εδ,ibδa
δ = 0.

Adding and subtracting this from (A.3) gives

(A.4)
�

δ

(1− εδ,i)bδa
δ = 0,

�

δ

(1 + εδ,i)bδa
δ = 0.

Pick a δ� such that bδ� �= 0. Since εδ�
,i

is ±1, one of the linear relations in (A.4) has no
δ�-term, so it has fewer nonzero terms than the minimal nontrivial relation (A.3). Thus all

terms in the shorter relation have coefficient 0. That is, any δ where bδ �= 0 has 1+εδ,i = 0
if εδ�

,i
= −1 and 1− εδ,i = 0 if εδ�

,i
= 1. In other words,

bδ �= 0 =⇒ εδ,i = εδ�
,i

for all i. Multiplying these equation over all i and using (A.2) tells us (−1)w(δ) = (−1)w(δ�
)

for all δ where bδ �= 0.
This implies, when bδ �= 0, that

(A.5) δi = 0 =⇒ εδ,i = (−1)w(δ�
)
.
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Since εδ,i = εδ�
,i

when bδ �= 0, we can rewrite (A.5) as

δi = 0 =⇒ εδ�
,i

= (−1)w(δ�
)

when bδ �= 0. Thus, when bδ �= 0,

δi = 0 =⇒ δ
�
i = 0.

Similarly,
δi = 1 =⇒ δ

�
i = 1,

so in fact δ = δ�. That is, the minimal nontrivial linear relation among the aδ ’s has just
one non-zero term. But then it reads bδ�aδ�

= 0, which is impossible. �
For a further discussion of results of this kind, see [6, p. 37].
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