- 1. Go over all the midterm, practice midterm, and midterm rewrite problems. Make sure you know how to do all of these, and understand any places where you didn't get full marks.
- 2. Go over all the quiz problems. Make sure you know how to do all of these, and understand any places where you didn't get full marks.
- 3. Go over your old homework problems. Make sure you know how to do all of these, and understand any places where you didn't get full marks.
- 4. Prove or Disprove and Salvage if Possible:
 - (a) If a sequence $\langle x \rangle$ of real numbers is unbounded, then it has a limit.
 - (b) If a sequence $\langle x \rangle$ of real numbers is not monotone then it has no limit.
 - (c) If a sequence $\langle x \rangle$ of real numbers converges, then there exists $n \in \mathbb{N}$ such that $|x_{n+1} x_n| < 1/2^n$.
 - (d) If $a_n \to 0$ and $b_n \to 0$, then $\sum a_n b_n$ converges.
- 5. Prove that $c^{1/n} \to 1$ whenever c is a positive real number.
- 6. A runaway train is hurtling toward a brick wall at the speed of 100 miles per hour. When it is two miles from the wall, a fly begins to fly repeatedly between the trains and the wall at the speed of 200 miles per hour. Determine how far the fly travels before it is smashed.
- 7. Suppose that $x_n \to 0$ and that $|y_n| \leq 1$ for $n \in \mathbb{N}$. Find the flaw in the following computation for $\lim(x_n y_n)$, and give a valid proof that $\lim(x_n y_n) = 0$:

$$\lim(x_n y_n) = \lim(x_n) \lim(y_n) = 0 \cdot \lim(y_n) = 0.$$

- 8. (Brahmagupta, 7th century CE) When eggs in a basket are removed 2,3,4,5,6 at a time there remain, respectively, 1,2,3,4,5 eggs. When they are taken out 7 at a time, none are left over. Find the smallest number of eggs that could have been contained in the basket.
- 9. Determine whether $1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$ converges.
- 10. Prove the following statement in two ways: If $\langle a \rangle$ is a sequence whose terms alternate in sign, converge to 0, and satisfy $|a_{k+1}| \leq |a_k|$ for all k, then the series $\sum_{k=0}^{\infty} a_k$ converges.
 - (a) Show that the partial sums form a Cauchy sequence
 - (b) Use Proposition 13.18 and the Squeeze Theorem (Thm. 14.6)