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1 Introduction

The Fourier transform is one of the key tools in solving and studying partial differential equations.
Indeed, a deep understanding of the Fourier transform has created the careers of many highly
respected mathematicians. In addition, understanding the Fourier transform paves the way for
understanding other integral transforms (e.g. the Laplace, Radon, Mellin and X-Ray transforms).
In the words of Prof. Michael Eastwood (University of Adelaide, Australia), “All good integral
transforms are really just the Fourier transform.”

The aim of these notes is twofold: first to provide some of the theoretical background regard-
ing the Fourier transform and PDE, and second to provide some intuition for how the Fourier
transform works. I wrote these notes more or less based on lecture notes I took in courses taught
by Ken Bube [1] and Gunther Uhlman [4].

The subject of the Fourier transform, and integral transforms in general, is vast and deep;
these notes cannot do more more than scratch its surface. In particular, these notes will not treat
convergence properties in a rigorous fashion. Many of the computations below are merely formal
computations, and to justify them one must understand important questions, such as when one
can interchange the order of integration. These questions are the territory of a graduate-level
analysis course (or several such courses). Rather than deal with such sticky issues as Fubini’s
theorem, Hölder’s inequality, etc., I will blithely differentiate underneath the integral sign, in-
terchange integrals, and so on. Fortunately, there are many fabulous books about the Fourier
transform. One of my favorite books is Folland’s book [2].

The organization of these notes is as follows: in section 2 discusses some basic properties of
convolutions. Section 3 introduces the Fourier transform and collects some of its basic properties.
Section 4 proves the Fourier inversion formula. Sections 5 and 6 use the Fourier transform to
treat the wave and heat equations, respectively, on a line.

2 Convolutions

One can think of the convolution of two functions as an averaging of one function against the
other. It is defined when f and/or g decay fast enough so that the improper integral converges.
More precisely:

Definition 1 Given two functions f and g, we define the convolution of f and g by

f ∗ g(x) =

∫ ∞

−∞
f(x − y)g(y)ds.

For instance, if f is bounded and
∫ ∞
−∞ |g(y)|dy is finite then f ∗ g is well defined (i.e. the

improper integral converges). In this case

|f ∗ g(x)| ≤ max |f |
∫ ∞

−∞
|g(y)|dy.
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(Exercise: derive this bound.)

2.1 Brief remarks on convergence

How fast does f need to decay so that

∫ ∞

−∞
|f(x)|dx < ∞?

One can gain some insight into this question by looking at simple examples. For instance, suppose
f behaves like |x|p for some power p and for large x. Then the total integral

∫

|f | of f behaves
like

∫ ∞

1

xpdx.

For p 6= 0,−1 this last integral is

∫ ∞

1

xpdx =
1

p
xp+1

∣

∣

∣

∣

∞

1

,

which is finite precisely when p < −1. For p = 0 the integral is infinite, and for p = −1 you get
a natural log term, which is again infinite. Thus we have the

Proposition 1 Let f = f(x) be a real-valued, piece-wise continuous function on the real line. If

there are numbers c > 0 and p < −1 such that

|f(x)| ≤ c(1 + |x|)p

then
∫ ∞
−∞ |f(x)|dx < ∞.

2.2 Some examples and properties

Suppose f = 1 and
∫ ∞
−∞ |g(y)|dy < ∞. Then the convolution

f ∗ g(x) =

∫

−∞
f(x − y)g(y)ds =

∫ ∞

−∞
g(y)dy

is the constant function
∫

g.
Suppose f(x) = x and g satisfies

∫

|g| < ∞ and
∫

|g′| < ∞. Then

f ∗ g′(x) =

∫ ∞

−∞
f(x − y)g′(y)dy

=

∫ ∞

−∞
(x − y)g′(y)dy

= x

∫ ∞

−∞
g(y)dy −

∫ ∞

−∞
yg′(y)dy

= x

∫ ∞

−∞
g′(y)dy +

∫ ∞

−∞
g(y)dy.

In the last step I integrated by parts. The boundary terms in the integration by part are both
zero because g(y) → 0 as y → ±∞. Notice that this time we get a linear function for f ∗ g,
regardless of what g is, so long as g decays fast enough. There is a general rule hiding here: the
convolution of a polynomial f and any function g with enough decay is another polynomial, of
the same order as f .
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Next I will list some important features of convolutions. Firstly, the convolution of two
functions does not depend on the order of the functions:

f ∗ g(x) =

∫ ∞

−∞
f(x − y)g(y)dy

=

∫ ∞

−∞
f(z)g(x − z)dz = g ∗ f(x).

Using the fact that f ∗ g = g ∗ f , one can take the derivative of f ∗ g two different ways:

d

dx
f ∗ g(x) =

d

dx

∫ ∞

−∞
f(x − y)g(y)dy =

∫ ∞

−∞

d

dx
(f(x − y)g(y))dy =

∫ ∞

−∞
f ′(x − y)g(y)dy

or
d

dx
f ∗ g(x) =

d

dx
g ∗ f(x) =

∫ ∞

−∞
g′(x − y)f(y)dy.

(Exercise: prove that if f is a polynomial of order k and g is any function with sufficient decay,
then f ∗ g is again a polynomial of order k.)

One should be a bit careful with convolutions, as they have some unusual properties. For
instance, if f(x) = 1

x+i and g(x) = 1
x−i then f ∗ g(x) = 0 for all x, even though neither f or g

are ever zero!. The proof of this is computation involving the Fourier transform, which we may
see a bit later. However, if f ∗ f(x) = 0 for all x, then f is really the zero function.

2.3 An approximate identity

Let Φ(x) = 1√
2π

e−
1
2 x2

and for ε > 0 define Φε(x) = 1
ε Φ(x

ε ). You may recognize Φ as the Gaussian

distribution from probability and statistics. It also appears frequently in quantum physics and
statistical mechanics. Notice Φ > 0 and Φ(x) → 0 as x → ±∞. In fact, we have the following

Lemma 2 For all ε > 0,
∫ ∞

−∞
Φε(x)dx = 1.

Proof: We begin with the observation that, using the change of variables y = x/ε,

∫ ∞

−∞
Φε(x)dx =

∫ ∞

−∞
Φ(y)dy.

Thus is suffices to show that
∫ ∞
−∞ Φ(x)dx = 1. We have

(

∫ ∞

−∞
e−

1
2 x2

dx)2 =

∫ ∞

−∞

∫ ∞

−∞
e−

1
2 (x2+y2)dydx

=

∫ 2π

0

∫ ∞

0

re−
1
2 r2

drdθ

= 2π (−e−
1
2 r2

)
∣

∣

∣

r=∞

r=0
= 2π.

�

However, as ε → 0, Φε(x) is very small for |x| ≥ ε. In fact, everywhere except x = 0, Φε → 0
uniformly. The value of Φε(0) grows arbitrarily large as ε → 0. In the limit, one obtains what is
commonly called the Dirac delta function centered at x = 0, denoted δ0. A nice characterization
of the Dirac delta function is the statement that

∫ ∞

−∞
δ0(x)f(x)dx = f(0). (1)
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Strictly speaking, δ0 is not a function; rather it is a generalization of a function called a distribution
(see [3]). However, you can just think of δ0 as Φε for ε very small, that is, a rescaled Gaussian
distribution.

One can recover equation (1) from the limit of integrals involving Φε as ε → 0. Indeed,

∫ ∞

−∞
|f(x) − Φε ∗ f(x)|dx ≤

∫ ∞

−∞

∫ ∞

−∞
|f(x) − Φε(x − y)f(y)|dydx → 0

as ε → 0. This is because for y far away from x, Φε(x − y) is very small. This computation
shows Φε ∗ f(x) is close to f(x) for all x, because if it were not then the integral above would be
bounded away from zero. We can summarize these properties with the following

Proposition 3 Let f be a bounded, piece-wise continuous function. Then

1. for any ε < 0, Φε ∗ f is a bounded function with infinitely many derivatives and

2. Φε ∗ f → f uniformly on bounded sets as ε → 0.

.
For this reason, Φε is called an approximate identity for ε small. (It is also sometimes called

a mollifier.) The reason for this terminology is that for ε > 0 small, Φε ∗ f is a function which is
everywhere very close to f .

3 The Fourier Transform

One can think of the Fourier transform of a function f as smearing the function values of f over
the whole real line. More precisely:

Definition 2 The Fourier transform of a function f is defined by

F(f)(ω) = f̂(ω) =
1√
2π

∫ ∞

−∞
e−ixωf(x)dx.

Here i is the square root of −1.

Notice that the Fourier transform of f is the convolution of f against a complex exponential,
which is highly oscillatory.

Again, the Fourier transform f̂ is defined only when the improper integral converges. For
instance, if

∫ ∞
−∞ |f(x)|dx < ∞, then f̂(ω) exists for all ω and

|f̂(ω)| ≤ 1√
2π

∫ ∞

−∞
|f(x)|dx.

In fact, under this condition (
∫

|f | < ∞), f̂(ω) → 0 as ω → ±∞. (Exercise: derive the bound

listed above and prove that in this case f̂(ω) → 0 as ω → ±∞.)

3.1 Some properties

Notice that the Fourier transform of any function f (provided f decays sufficiently so that the
improper integral converges) has as many derivatives as you please: just differentiate the expo-

nential under the integral sign. In particular, f need not even be continuous and f̂ can still have
infinitely many derivatives.

The Fourier transform enjoys many nice properties, some of which are listed below.
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First note that for an a ∈ R,

F(eiaxf(x))(ω) =
1√
2π

∫ ∞

−∞
e−ixωeiaxf(x)dx =

1√
2π

∫ ∞

−∞
e−i(ω−a)xf(x)dx = f̂(ω − a).

Similarly,

F(f(x − y))(ω) =
1√
2π

∫ ∞

−∞
e−ixωf(x − y)dx =

1√
2π

∫ ∞

−∞
e−iω(z+y)f(z)dz = e−iyωf̂(ω).

Here we have used the change of variables z = x−y. We can summarize these last two properties
by saying that the Fourier transform intertwines translation and multiplication by a complex
exponential.

Also, (provided f and f ′ decay quickly enough)

F(f ′)(ω) =
1√
2π

∫ ∞

−∞
e−ixωf ′(x)dx =

1√
2π

−iωe−ixωf(x)
∣

∣

x=∞

x=−∞
+

iω√
2π

∫ ∞

−∞
e−ixωf(x)dx = iωf̂(ω).

Here we have used the fact that f(x) → 0 as x → ±∞ to conclude that the boundary terms in

the integration by parts both go to zero. There is similarly a nice formula for d
dω f̂(ω):

d

dω
f̂(ω) =

1√
2π

d

dω

∫ ∞

−∞
e−ixωf(x)dx =

1√
2π

∫ ∞

−∞

d

dω
e−ixωf(x)dx

=
1√
2π

∫ ∞

−∞
e−ixω(−ixf(x))dx = F(−ixf)(ω).

In other words, the Fourier transform intertwines differentiation and multiplication by a polyno-
mial. This property of the Fourier transform is perhaps the most useful property it has.

The Fourier transform of a convolution has a very pretty expression:

F(f ∗ g)(ω) =
1√
2π

∫ ∞

−∞
e−ixωf ∗ g(x)dx

=
1√
2π

∫ ∞

−∞
e−ixω

∫ ∞

−∞
f(x − y)g(y)dydx

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞
e−ixωf(x − y)g(y)dxdy

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞
e−ixωe−iyωeiyωf(x − y)g(y)dxdy

=
1√
2π

∫ ∞

−∞
e−iω(x−y)f(x − y)d(x − y) ·

∫ ∞

−∞
e−iyωg(y)dy

=
√

2πf̂(ω) · ĝ(ω).

Thus the Fourier transform of a convolution is the product of the Fourier transforms.
It is also instructive to separate the Fourier transform into sine and cosine parts. Indeed,

f̂(ω) =
1√
2π

∫ ∞

−∞
e−ixωf(x)dx =

1√
2π

∫ ∞

−∞
(cos(xω) − i sin(xω))f(x)dx

=
1√
2π

∫ ∞

−∞
cos(xω)f(x)dx − i√

2π

∫ ∞

−∞
sin(xω)f(x)dx.

The first term in the final expression above is often called the Fourier cosine transform, and it
is the real part of the Fourier transform. Meanwhile, the second term is often called the Fourier
sine transform, and it is (up to a sign) the imaginary part of the Fourier transform. Notice that
the Fourier sine transform of an even function is zero and (and therefore the Fourier transform
of an even function is real-valued). (Exercise: formulate the corresponding statement for an odd
function.)
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3.2 Some examples

There are some Fourier transforms we can easily compute, which we will discuss in this section.
We will begin with a square pulse:

f(x) =

{

1 |x| < 1
0 |x| ≥ 1.

Then

f̂(ω) =
1√
2π

∫ ∞

−∞
e−ixωf(x)dx =

1√
2π

∫ 1

−1

e−ixωdx

= − 1

iω
√

2π
e−ixω

∣

∣

1

−1
= − 1

iω
√

2π
(e−iω − eiω)

=
2 sinω√

2πω
.

Now let f(x) be defined by

f(x) =

{

e−x x > 0
0 x < 0.

Then

f̂(ω) =
1√
2π

∫ ∞

−∞
e−ixωf(x)dx =

1√
2π

∫ ∞

0

e−x(1+iω)dx =
1√
2π

− 1

1 + iω
e−x(1+iω)

∣

∣

∣

∣

t=∞

t=0

=
1√

2π(1 + iω)
.

The reason we truncated the exponential in f was to ensure that f has sufficient decay so that
the Fourier transform is well-defined. Recall that e−x → ∞ as x → −∞, so if we let g(x) = e−x

then
∫ ∞
−∞ e−ixωg(x)dx =

∫ ∞
−∞ e−ixωe−xdt is a divergent improper integral.

We can also compute the Fourier transform of xf(x):

F(xf)(ω) = i
d

dω
f̂(ω) = i

1√
2π

d

dω
(

1

1 + iω
) =

1√
2π(1 + iω)2

.

Again, to do this computation rigorously, one must justify that xf(x) decays fast enough so that
its Fourier transform is well defined.

Recall that we defined Φ(x) = 1√
2π

e−
1
2 x2

in section 2. To find the Fourier inversion formula

we will need the following lemma.

Lemma 4 Φ̂ = Φ.

Proof: First notice that
d

dx
Φ = − x√

2π
e−x2/2 = −xΦ.

The taking the Fourier transform, we see

−i
d

dω
Φ̂ = F(−xΦ) = F(Φ′) = iωΦ̂,

which we can rewrite as
d

dω
Φ̂ = −ωΦ̂.

Solving this differential equation for Φ̂, we see

Φ̂(ω) = Φ̂(0)e−ω2/2,
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so it remains only to find Φ̂(0). However,

Φ̂(0) =
1√
2π

∫ ∞

−∞
Φ(x)dx =

1√
2π

,

so

Φ̂(ω) =
1√
2π

e−ω2/2 = Φ(ω).

2

Notice that by the change of variables y = x
ε , we have

Φ̂ε(ω) = Φ̂(εω) = Φ(εω) =
1√
2π

e−ε2ω2/2. (2)

The above lemma also shows

Φε(x) =
1

ε
Φ(

x

ε
) =

1

ε
Φ̂(

x

ε
) =

1

ε

1√
2π

∫ ∞

−∞
e−i x

ε
ωΦ(ω)dω (3)

=
1√
2π

∫ ∞

−∞
e−ixyΦ(εy)dy =

1√
2π

∫ ∞

−∞
eixzΦ(εz)dz.

Here we have used two changes of variables: first y = ω
ε and then z = −y. We have also used

Φ(y) = Φ(−y) (i.e., Φ is an even function). We will use equation (4) to derive the Fourier inversion
formula.

4 The Fourier inversion formula

In this section we will derive a formula for the inverse Fourier transform F−1(f) = f̌(x).

Theorem 5 f(x) = 1√
2π

∫ ∞
−∞ eixωf̂(ω)dω.

Proof: We will use equation (4):

Φε(x) =
1√
2π

∫ ∞

−∞
eixzΦ(εz)dz.

Then

f ∗ Φε(x) =

∫ ∞

−∞
f(x − y)Φε(y)dy =

1√
2π

∫ ∞

−∞

∫ ∞

−∞
f(x − y)eiyωΦ(εω)dωdy

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞
f(x − y)eiyωe−ixωeixωΦ(εω)dωdy

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞
f(x − y)e−iω(x−y)eixωΦ(εω)dωdy

=
1√
2π

∫ ∞

−∞

[
∫ ∞

−∞
e−iω(x−y)f(x − y)d(x − y)

]

eixωΦ(εω)dω

=
1√
2π

∫ ∞

−∞
f̂(ω)eixωΦ(εω)dω → 1√

2π

∫ ∞

−∞
eixωf̂(ω)dω

However, we know that
f ∗ Φε(x) → f(x)

as ε → 0, so the above computation shows

f(x) =
1√
2π

∫ ∞

−∞
eixωf̂(ω)dω.

7



�

This yields a formula for the inverse transform of the Fourier transform:

F−1(g)(x) = ǧ(x) =

∫ ∞

−∞
eixωg(ω)dω.

The above formula is know as the Fourier inversion formula.
You may recall that back in section 2 I listed two nowhere zero functions f(x) = 1

x+i and

g(x) = 1
x−i such that the convolution f ∗ g is everywhere zero. Now we can finally prove this

remarkable property. If we define h by

h(x) =

{

e−x x > 0
0 x < 0

we have already seen that ĥ(ω) = −i 1
ω−i . Also, ĥ(−ω) = i 1

ω+i . This implies

f(ω) =
1

ω − i
= iĥ(ω) g(ω) =

1

ω + i
= −iĥ(−ω).

Now we are ready to compute the convolution.

f ∗ g(t) = (F(f(ω)) ∗ F(f(−ω)))(t) = F(f(ω) · f(−ω)) = 0

because for all ω either f(ω) = 0 or f(−ω) = 0 (and the Fourier transform of zero is zero).

5 The wave equation

There are several methods for solving the wave equation on a line. First, we must be more precise
about what equation we are solving. In this section we will consider the following initial value
problem:







∂2
t u(x, t) = ∂2

xu(x, t)
u(x, 0) = f(x)

∂tu(x, 0) = g(x).
(4)

We will take u = u(x, t) to be defined for all x and t. For technical reasons, we will need some
decay conditions on the f and g, so that we can apply the Fourier transform and inverse Fourier
transform. For instance, we might want both f(x) and g(x) to be zero for |x| sufficiently large; this
condition is, of course, sufficient to make sense of the Fourier transform, but it is not necessary.
Or we might suppose that f(x) and g(x) decay very quickly as x → ±∞. One can think of these
decay conditions as boundary conditions on u as x → ±∞.

The key idea in solving (4) is to apply the Fourier transform in the x-variable only. If we
denote this transform as

û(ω, t) =
1√
2π

∫ ∞

−∞
e−ixωu(x, t)dx,

the differential equation becomes
û′′ = −ω2û,

with the initial conditions

û(ω, 0) = f̂(ω), û′(ω, 0) = ĝ(ω).

Here the prime denote differentiation with respect to t. This is now just an ODE for û in the t
variable, with the parameter ω. We have a second order ODE

û′′ + ω2û,
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which has solutions
û(ω, t) = c1(ω) cos(ωt) + c2(ω) sin(ωt).

Notice that
û(ω, 0) = c1(ω), û′(ω, 0) = ωc2(ω).

Next we need to match the initial conditions:

f̂(ω) = û(ω, 0) = c1(ω)

and
ĝ(ω) = û′(ω, 0) = ωc2(ω).

Thus the solution to the transformed problem (for û) is

û(ω, t) = f̂(ω) cos(ωt) +
ĝ(ω)

ω
sin(ωt).

We can now find u = u(x, t) by doing the inverse Fourier transform:

u(x, t) = F−1(f̂ cos(ωt)+
ĝ

ω
sin(ωt)) =

1√
2π

∫ ∞

−∞
eixωf̂(ω) cos(ωt)dω+

1√
2π

∫ ∞

−∞
eixω ĝ(ω)

ω
sin(ωt)dω.

There is another approach to solving the wave equation, which involves factoring the differ-
ential equation. We can rewrite the wave equation as

0 = ∂2
t u − ∂2

xu = (∂2
t − ∂2

x)u = (∂t − ∂x)(∂t + ∂x)u,

which implies that any solution u = u(x, t) of the wave equation satisfies either

0 = (∂t − ∂x)u = ∂tu − ∂xu

or
0 = (∂t + ∂x)u = ∂tu + ∂xu.

Now change variables to
(t̄, x̄) = (t − x, t + x).

One can check that is is a well-defined change of variables; in fact, it is just a rotation by π/4 in
the counter-clockwise direction and a rescaling be

√
2. This change of variables transforms the

tow differential equations into
0 = (∂t − ∂x)u = ∂t̄u

and
0 = (∂t + ∂x)u = ∂x̄u.

If we specialize to the case where g(x, 0) = 0 (i.e. the initial velocity is zero) then the solution to
(4) is given by

u(x̄, t̄) =
1

2
[u|t̄=0 + u|x̄=0] =

1

2
[f(x + t) + f(x − t)].

In this case, we have recovered D’Alembert’s principle: any solution to the wave equation is the
sum of a left-moving wave and a right-moving wave.
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6 The heat equation

This time the initial value problem we want to solve is
{

∂tu(x, t) = ∂2
xu(x, t)

u(x, 0) = f(x).
(5)

This time = u(x, t) is defined for all x and for t ≥ 0. Again, we will need some decay conditions
on f , which one can think of as boundary conditions.

Taking the Fourier transform in the x-variable, we obtain the equation

û′(ω, t) = −ω2û(ω, t),

with the initial condition
û(ω, 0) = f̂(ω).

This ODE (with parameters) has the solution

û(ω, t) = f̂(ω)e−ω2t,

so taking the inverse Fourier transform we have

u(x, t) =
1√
2π

∫ ∞

−∞
eixωf̂(ω)e−ω2tdω.

This time, we can write our solution in a very nice form. The first key observation is that û
is the product of two Fourier transforms we already know. Indeed, û is just f̂ multiplied by a
rescaled Gaussian distribution. More precisely, using equation (2) we have

e−ω2t = e−
(ω

√

2t)2

2 =
√

2πΦ(ω
√

2t) =
√

2πΦ̂√
2t(ω).

Plugging this into our formula for û, we find

û(ω, t) = f̂(ω)e−ω2t =
√

2πf̂(ω) · Φ̂√
2t(ω) = F(f ∗ Φ√

2t)(ω).

Taking the inverse Fourier transform, we have

u(x, t) = f ∗ Φ√
2t(x, t) = Φ√

2t ∗ f(x, t) =
1√
2t

∫ ∞

−∞
e−

(x−y)2

4t f(y)dy.

Thus we have written our solution to (5) as a convolution with a time-dependent Gaussian
distribution. The function

Γ(x, y, t) :=
1√
2t

· e−
(x−y)2

4t

is called the heat kernel, or the Gauss kernel. Notice that the Γ decays exponentially as t → ∞.
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