On quantitative absolute continuity of harmonic measure and big piece approximation by chord-arc domains

Steve Hofmann (joint work with J. M. Martell)

April 21, 2018
F. and M. Riesz (1916): Ω ⊂ ℂ, simply connected. Then ∂Ω rectifiable implies ω ≪ σ.

C.E. due to C. Bishop and P. Jones (1990): conclusion need not hold w/o some connectivity.

Notation: ω = harmonic measure (at generic point in Ω), σ = ℋ^{1}|_{∂Ω} (or σ = ℋ^{d−1}|_{∂Ω} in ℝ^d).

Recall: ∂Ω rectifiable = covered by a countable union of Lipschitz graphs, up to a set of ℋ^1 (or ℋ^{d−1}) measure 0.
What about higher dimensions? (note: \(d = n + 1 \) from now on)

- Dahlberg (1977): \(\Omega \) Lipschitz domain in \(\mathbb{R}^{n+1} \), then \(\omega \in A_\infty(\sigma) \).
What about higher dimensions? (note: $d = n + 1$ from now on)

- Dahlberg (1977): Ω Lipschitz domain in \mathbb{R}^{n+1}, then $\omega \in A_\infty(\sigma)$.

- A_∞ is quantitative, scale invariant version of absolute continuity.
What about higher dimensions? (note: \(d = n + 1 \) from now on)

- Dahlberg (1977): \(\Omega \) Lipschitz domain in \(\mathbb{R}^{n+1} \), then \(\omega \in A_\infty(\sigma) \).

- \(A_\infty \) is quantitative, scale invariant version of absolute continuity.

Remark: it follows that Dirichlet problem solvable with \(L^p \) data, some \(p < \infty \) (in fact, in Lip domain can take \(p = 2 \) or even \(2 - \varepsilon \)).
A_∞ more precisely:

- $\omega \in A_\infty(\sigma)$ means that $\forall B$ centered on $\partial \Omega$ with $r_B < \text{diam}(\partial \Omega)$, and \forall Borel $E \subset \Delta := B \cap \partial \Omega$, $X \in \Omega \setminus 4B$

\[
\omega^X(E) \lesssim \left(\frac{\sigma(E)}{\sigma(\Delta)} \right)^\theta \omega^X(\Delta).
\]
A_\infty more precisely:

- \(\omega \in A_\infty(\sigma) \) means that \(\forall B \) centered on \(\partial \Omega \) with \(r_B < \text{diam}(\partial \Omega) \), and \(\forall \) Borel \(E \subset \Delta := B \cap \partial \Omega, X \in \Omega \setminus 4B \)

\[
\omega^X(E) \lesssim \left(\frac{\sigma(E)}{\sigma(\Delta)} \right)^{\theta} \omega^X(\Delta).
\]

- weak-\(A_\infty \) is the same but with \(\omega^X(2\Delta) \) on RHS.

I.e., weak-\(A_\infty \) is \(A_\infty \) but w/o doubling.
A_∞ more precisely:

- $\omega \in A_\infty(\sigma)$ means that $\forall B$ centered on $\partial \Omega$ with $r_B < \text{diam}(\partial \Omega)$, and \forall Borel $E \subset \Delta := B \cap \partial \Omega$, $X \in \Omega \setminus 4B$

$$\omega^X(E) \lesssim \left(\frac{\sigma(E)}{\sigma(\Delta)}\right)^\theta \omega^X(\Delta).$$

- weak-A_∞ is the same but with $\omega^X(2\Delta)$ on RHS.

I.e., weak-A_∞ is A_∞ but w/o doubling.

- Note that A_∞ and weak-A_∞ are each quantitative, scale invariant versions of absolute continuity.
David-Jerison (1990), and independently Semmes: Ω
“chord-arc” domain (aka CAD) in \mathbb{R}^{n+1}, then $\omega \in A_\infty(\sigma)$.

Definition: CAD = NTA + ADR boundary

ADR: $\sigma(\Delta(x, r)) \approx r^n$

NTA = int. and ext. Corkscrew (CS) + Harnack Chains (HC)
David-Jerison (1990), and independently Semmes: Ω “chord-arc” domain (aka CAD) in \mathbb{R}^{n+1}, then $\omega \in A_{\infty}(\sigma)$.

Definition: CAD = NTA + ADR boundary

ADR: $\sigma(\Delta(x, r)) \approx r^n$

NTA = int. and ext. Corkscrew (CS) + Harnack Chains (HC)

CS: $\exists B' \subset B \cap \Omega$, with $r_{B'} \approx r_B$; denote by $X_B =$ center of B'; this is a “CS point relative to B”.

HC: quantitative scale invariant path connectedness.
Method of proof of [DJ]: ADR + 2-sided CS implies “Interior Big Pieces of Lipschitz Sub-Domains” (IBPLSD); i.e., for every B centered on $\partial \Omega$, with $r_B < \text{diam}(\partial \Omega)$, \exists subdomain $\Omega_B \subset \Omega \cap B$ s.t.

- Ω_B is a Lipschitz domain, with constants uniform in B.

Remark: \exists a refinement of this result due to M. Badger in absence of upper ADR bound.
Method of proof of [DJ]: ADR + 2-sided CS implies “Interior Big Pieces of Lipschitz Sub-Domains” (IBPLSD); i.e., for every B centered on $\partial \Omega$, with $r_B < \text{diam}(\partial \Omega)$, \exists subdomain $\Omega_B \subset \Omega \cap B$ s.t.

- Ω_B is a Lipschitz domain, with constants uniform in B.
- \exists CS point $X_B \in \Omega_B$, w/ $\text{dist}(X_B, \partial \Omega_B) \gtrsim r_B$.

Remark: \exists a refinement of this result due to M. Badger in absence of upper ADR bound.
Method of proof of [DJ]: ADR + 2-sided CS implies “Interior Big Pieces of Lipschitz Sub-Domains” (IBPLSD); i.e., for every B centered on $\partial \Omega$, with $r_B < \text{diam}(\partial \Omega)$, \exists subdomain $\Omega_B \subset \Omega \cap B$ s.t.

- Ω_B is a Lipschitz domain, with constants uniform in B.
- \exists CS point $X_B \in \Omega_B$, w/ $\text{dist}(X_B, \partial \Omega_B) \gtrsim r_B$.
- $\sigma(\partial \Omega_B \cap \partial \Omega) \gtrsim \sigma(\Delta) \approx r^n_B$ (uniformly in B).

(Here, as usual $\Delta = B \cap \partial \Omega$.)
Method of proof of [DJ]: ADR + 2-sided CS implies "Interior Big Pieces of Lipschitz Sub-Domains" (IBPLSD); i.e., for every B centered on $\partial \Omega$, with $r_B < \text{diam}(\partial \Omega)$, \exists subdomain $\Omega_B \subset \Omega \cap B$ s.t.

- Ω_B is a Lipschitz domain, with constants uniform in B.
- \exists CS point $X_B \in \Omega_B$, w/ $\text{dist}(X_B, \partial \Omega_B) \gtrsim r_B$.
- $\sigma(\partial \Omega_B \cap \partial \Omega) \gtrsim \sigma(\Delta) \approx r_B^n$ (uniformly in B).

(Here, as usual $\Delta = B \cap \partial \Omega$).

Remark: \exists a refinement of this result due to M. Badger in absence of upper ADR bound.
Q: why does this give A_∞?

- IBPLSD implies: by Dahlberg (applied in Ω_B), plus maximum principle, obtain $\exists \eta \in (0, 1)$ s.t. for Borel $E \subset \Delta$,

\[
\sigma(E) \geq (1 - \eta)\sigma(\Delta) \implies \omega^{X_B}(E) \gtrsim 1.
\]

(Note: non-degeneracy at one scale).
Q: why does this give A_∞?

- IBPLSD implies: by Dahlberg (applied in Ω_B), plus maximum principle, obtain $\exists \eta \in (0,1)$ s.t. for Borel $E \subset \Delta$,

$$\sigma(E) \geq (1 - \eta)\sigma(\Delta) \implies \omega^{x_B}(E) \gtrsim 1.$$

(Note: non-degeneracy at one scale).

- Then use pole change formula for harmonic measure (uses HC), to change scales, i.e., to improve to $\omega \in A_\infty(\sigma)$.
Bennewitz-Lewis (2004): Ω 2-sided CS w/ ADR boundary, then $\omega \in \text{weak-}A_\infty(\sigma)$ (Note: no HC assumption).
Bennewitz-Lewis (2004): \(\Omega \) 2-sided CS w/ ADR boundary, then \(\omega \in \text{weak-}A_\infty(\sigma) \) (Note: no HC assumption).

Again by [DJ] have IBPLSD, hence again have (*).
Bennewitz-Lewis (2004): Ω 2-sided CS w/ ADR boundary, then $\omega \in \text{weak-}A_\infty(\sigma)$ (Note: no HC assumption).

Again by [DJ] have IBPLSD, hence again have (*).

w/o HC, pole change formula unavailable; [BL] argument “changes pole w/o pole change formula”, this (necessarily) introduces errors which result in non-doubling; weak-A_∞ is best possible conclusion.
Some Converse results:

- Lewis - Vogel (2007): $\partial \Omega$ ADR, $\omega \approx \sigma$; i.e., $k := \frac{d\omega}{d\sigma} \approx 1$ (after normalizing). Then $\partial \Omega$ is Uniformly Rectifiable (UR) (quantitative scale invariant version of rectifiability - David-Semmes).

Proof idea (both papers), based on Alt-Caffarelli technique: small oscillation of ∇G plus non-degeneracy of ∇G implies flatness.
Some Converse results:

- Lewis - Vogel (2007): $\partial \Omega$ ADR, $\omega \approx \sigma$; i.e., $k := \frac{d\omega}{d\sigma} \approx 1$ (after normalizing). Then $\partial \Omega$ is Uniformly Rectifiable (UR) (quantitative scale invariant version of rectifiability - David-Semmes).

- S.H. - Martell (2016): same result under weaker assumption $\omega \in \text{weak-}A_\infty(\sigma)$
Some Converse results:

- Lewis - Vogel (2007): $\partial \Omega$ ADR, $\omega \approx \sigma$; i.e., $k := \frac{d\omega}{d\sigma} \approx 1$ (after normalizing). Then $\partial \Omega$ is Uniformly Rectifiable (UR) (quantitative scale invariant version of rectifiability - David-Semmes).

- S.H. - Martell (2016): same result under weaker assumption $\omega \in \text{weak-}A_\infty(\sigma)$

Proof idea (both papers), based on Alt-Caffarelli technique: small oscillation of ∇G plus non-degeneracy of ∇G implies flatness.
Recent Results (posted late 2017- early 2018)

- J. Azzam: \(\partial \Omega \) ADR, then

\[\omega \in A_{\infty}(\sigma) \iff \partial \Omega \text{ UR and } \Omega \text{ “semi-uniform” (S-U)}. \]

S-U almost like interior CS + HC (uniform domain) except only assume HC joining interior points to boundary points (e.g., allows “slit disk”).
Recent Results (posted late 2017- early 2018)

- J. Azzam: $\partial \Omega$ ADR, then

$$\omega \in A_\infty(\sigma) \iff \partial \Omega \text{ UR and } \Omega \text{ “semi-uniform” (S-U).}$$

S-U almost like interior CS + HC (uniform domain) except only assume HC joining interior points to boundary points (e.g., allows “slit disk”).

Proof ingredients:

- ω doubling $\iff \Omega$ is S-U (improved Aikawa result).
 (Remark: doubling of $\omega \implies$ interior CS “cheaply”.)
Recent Results (posted late 2017- early 2018)

- J. Azzam: $\partial \Omega$ ADR, then

$$\omega \in A_\infty(\sigma) \iff \partial \Omega \text{ UR and } \Omega \text{ “semi-uniform” (S-U).}$$

S-U almost like interior CS + HC (uniform domain) except only assume HC joining interior points to boundary points (e.g., allows “slit disk”).

Proof ingredients:

- ω doubling \iff Ω is S-U (improved Aikawa result).
 (Remark: doubling of $\omega \implies$ interior CS “cheaply”.)
- $\omega \in A_\infty \implies \partial \Omega \text{ UR by S.H. - Martell.}$
J. Azzam: $\partial \Omega$ ADR, then

$\omega \in A_\infty(\sigma) \iff \partial \Omega$ UR and Ω “semi-uniform” (S-U).

S-U almost like interior CS + HC (uniform domain) except only assume HC joining interior points to boundary points (e.g., allows “slit disk”).

Proof ingredients:

- ω doubling $\iff \Omega$ is S-U (improved Aikawa result).
 (Remark: doubling of $\omega \implies$ interior CS “cheaply”.)
- $\omega \in A_\infty \implies \partial \Omega$ UR by S.H. - Martell.
- UR + S-U implies IBPCAD; so, get (*) by M.P. + [DJ], improve to weak-A_∞ by [BL], then S-U gives doubling, hence A_∞.
Remark: note that connectivity in Azzam’s result (S-U condition) is about doubling, not about absolute continuity.

OTOH, in light of Bishop-Jones example, the question remains: what is minimal connectivity assumption, which, in conjunction with UR, yields quantitative absolute continuity of harmonic measure?
Remark: note that connectivity in Azzam’s result (S-U condition) is about *doubling*, not about absolute continuity.

OTOH, in light of Bishop-Jones example, the question remains: what is minimal connectivity assumption, which, in conjunction with UR, yields quantitative absolute continuity of harmonic measure?

- Combining work of two different groups of authors, we can now answer this.
Let \(\Omega \subset \mathbb{R}^{n+1} \) be an open set with interior CS, and ADR boundary. Then TFAE:

1. \(\partial \Omega \) is UR, and \(\Omega \) satisfies “Weak Local John” (WLJ) condition.
2. \(\Omega \) satisfies Interior Big Pieces of Chord-Arc Domains (IBPCAD).
3. \(\omega \in \text{weak-}A_\infty(\sigma) \).

WLJ entails connected non-tangential path from CS point \(X_B \) to a “big piece” portion of \(\Delta = B \cap \partial \Omega \); (could also be thought of as “Weak Local S-U”).
Recent Results (continued)

Evolution of this result:

1. \((1) \implies (2) \) new result of S.H. - Martell

Remark: direct proof \((1) \implies (3) \) is slightly earlier result (a few months ago) of S.H. - Martell.

Remark: background hypotheses (upper and lower ADR, interior CS are in nature of best possible - \(\exists \) C.E. in absence of any one of them.)
Evolution of this result:

- $(1) \implies (2)$ new result of S.H. - Martell
- $(2) \implies (3)$ immediate from M.P. plus [DJ] plus [BL] as described above.

Remark: direct proof $(1) \implies (3)$ is slightly earlier result (a few months ago) of S.H. - Martell.

Remark: background hypotheses (upper and lower ADR, interior CS are in nature of best possible - \exists C.E. in absence of any one of them.
Evolution of this result:

- (1) \implies (2) new result of S.H. - Martell
- (2) \implies (3) immediate from M.P. plus [DJ] plus [BL] as described above.
- (3) \implies (1) has two parts: weak-A_∞ \implies UR is S.H. - Martell result mentioned earlier; weak-A_∞ \implies WLJ is new result of Azzam-Mourgoglou-Tolsa.

Remark: direct proof (1) \implies (3) is slightly earlier result (a few months ago) of S.H. - Martell.

Remark: background hypotheses (upper and lower ADR, interior CS are in nature of best possible - \exists C.E. in absence of any one of them.)
Recent Results (continued)

Evolution of this result:

(1) \implies (2) new result of S.H. - Martell

(2) \implies (3) immediate from M.P. plus [DJ] plus [BL] as described above.

(3) \implies (1) has two parts: weak-A_∞ \implies UR is S.H. - Martell result mentioned earlier; weak-A_∞ \implies WLJ is new result of Azzam-Mourgoglou-Tolsa.

Remark: direct proof (1) \implies (3) is slightly earlier result (a few months ago) of S.H. - Martell.

Remark: background hypotheses (upper and lower ADR, interior CS are in nature of best possible - \exists C.E. in absence of any one of them.)
Recent Results (continued)

Proof ingredients:

- (1) \Rightarrow (2): Corona approximation of UR set by CAD’s (S.H. - Martell - Mayboroda 2016) plus 2-parameter bootstrapping scheme based on “extrapolation of Carleson measures” (J. Lewis).

- (3) \Rightarrow (1): (new part of [AMT]) use of Alt-Caffarelli-Friedman monotonicity formula to establish connectivity.
Thank you!