Important Notice: To prepare for the final exam, one should study the past exams and practice midterms (and homeworks, quizzes, and worksheets), not just this practice final. A topic not being on the practice final does not mean it won't appear on the final.

- 1. If the statement is always true, circle the printed capital T. If the statement is sometimes false, circle the printed capital F. In each case, write a careful and clear justification or a counterexample.
 - (a) If a force of F(x) = 6x pounds is required to stretch a spring x feet False beyond its rest length, then 36 ft-lbs of work is done in stretching the spring from its natural length to 6 feet beyond its rest length.
 - (b) The trapezoid rule with n = 5 for $\int_0^4 \frac{dx}{2x+1}$ will be an overestimate. True
 - (c) $\ln(2.5) = 1.5 \frac{1}{2}(1.5)^2 + \frac{1}{3}(1.5)^3 \frac{1}{4}(1.5)^4 + \frac{1}{5}(1.5)^5 \dots$ False
 - (d) The improper integral $\int_1^\infty \frac{x^2}{(x^3+7)^{1/3}} dx$ converges.
 - (e) The tangent line to the parametric curve $(x, y) = (t 1/t, 4 + t^2)$ at the point True where t = 1 has equation y = x + 5.
- 2. For each multiple choice question, circle the correct answer. There is only one correct choice for each answer.
 - (a) A cylindrical tank with a radius of 1 meter and a height of 8 meters is half full. Letting y = 0 correspond to the top of the tank and ρ be the density of water, the work required to pump the water out of the tank is

(a)
$$\pi \rho g \int_{4}^{8} y \, dy$$
 (b) $\pi \rho g \int_{0}^{8} y \, dy$ (c) $\pi \rho g \int_{0}^{4} y \, dy$ (d) $16\pi \rho g \int_{4}^{8} y \, dy$

(b) The Taylor series at x = 0 for $\sin x$ is

(a)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{n!}$$
 (b) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ (c) $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{(2n-1)!}$ (d) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$

- (c) A parametric curve tracing out the circle once clockwise for $0 \le t \le \pi$ starting at (1,0) is
 - (a) $(\cos t, \sin t)$ traces out the top half of the circle counter-clockwise starting at (1, 0).
 - (b) $(\cos t, -\sin t)$ traces out the bottom half of the circle clockwise starting at (1, 0).
 - (c) $(\cos(2t), \sin(2t))$ traces out the complete circle counter-clockwise starting at (1, 0).
 - (d) $(\cos(2t), -\sin(2t))$ traces out the complete circle clockwise starting at (1, 0).

(d) Which differential equation has the direction field shown?

(i) $y'(t) = 6 - 3y$	
(ii) $y'(t) = y$	
(iii) $y'(t) = 3y - 6$	
(iv) $y'(t) = (y-2)e^t$	

- 3. Let R be the region enclosed by the curves y = 2x and $y = x^2$. Write a definite integral that gives the volume of the solid generated by rotating the region R around the line y = 6.
- 4. A solid has a base bounded by the curves $y = x^2$ and $y = 2 x^2$ for $-1 \le x \le 1$. Cross-sections perpendicular to the x-axis are squares. Write a definite integral for its volume.
- 5. Compute: (a) $\int x \cos x \, dx$ using integration by parts, (b) $\int \frac{x+1}{x(x-4)} \, dx$ using partial fractions.
- 6. Use the error bound formulas on the last page to determine an n such that the trapezoid rule with n subintervals approximates $\int_0^1 \frac{1}{e^x} dx$ to within .001.
- 7. (a) Obtain the Taylor series for $\frac{1}{1+x}$ at x = 0 from the geometric series for $\frac{1}{1-x}$.
 - (b) Use your result from part (a) and integration to write down the Taylor series at x = 0 for $\ln(1+x)$ and then find its interval of convergence.
- 8. Find the 3rd-order Taylor polynomial centered at 4 for $\frac{1}{\sqrt{x}}$.
- 9. How many terms of $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2+1}$ do we need to add to estimate the series with |error| < 0.001?
- 10. Use the integral test to show $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges if p > 1 and diverges if 0 .

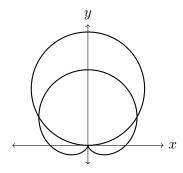
11. Determine which of the following series converges conditionally, converges absolutely or diverges. Specify which convergence test you use and show how it leads to the answer.

(a)
$$\sum_{k=2}^{\infty} \frac{(-1)^k}{\ln k}$$
 (b) $\sum_{k=1}^{\infty} \frac{k^2}{k^2 + 50}$ (c) $\sum_{k=1}^{\infty} \frac{(-1)^k k^5}{k!}$ (d) $\sum_{k=0}^{\infty} \frac{5}{2^k + 5k + 3}$

12. Solve for y exactly:

(a)
$$\frac{dy}{dx} = \frac{\sin x}{y^2}$$
 with $y(0) = 3$. (b) $\frac{dy}{dx} = y \cos x + xy$ with $y(0) = 3$.

- 13. Find the orthogonal trajectories of the family of curves $y = kx^4$.
- 14. A tank contains 60 L of water with 5 kg of salt dissolved in it. Brine that contains 2 kg of salt per liter enters the tank at a rate of 3 L/min. Pure water is also flowing into the tank at a rate of 2 L/min. The solution in the tank is kept well mixed and is drained at a rate of 5 L/min. How much salt remains in the tank after 30 minutes? What happens in the long run?
- 15. Below are graphs of $r = 3\sin\theta$ and $r = 1 + \sin\theta$.



- (a) Determine both polar and rectangular coordinates for all points where the curves cross.
- (b) Set up, but do **not** evaluate, an integral for the area of the region inside $r = 3 \sin \theta$ and outside $r = 1 + \sin \theta$.

Midpoint Rule and Error Bound:

$$M_n = (f(\overline{x}_1) + f(\overline{x}_2) + f(\overline{x}_3) + \dots + f(\overline{x}_n))\Delta x$$

and

$$\left| \int_{a}^{b} f(x) \, dx - M_{n} \right| \le \frac{K(b-a)}{24} (\Delta x)^{2} = \frac{K(b-a)^{3}}{24n^{2}},$$

where \overline{x}_i is the midpoint of $[x_{i-1}, x_i]$ and K is an upper bound on |f''(x)| over [a, b]: $|f''(x)| \le K$ for $a \le x \le b$.

Trapezoid Rule and Error Bound: Let $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$ with $x_i - x_{i-1} = \Delta x = \frac{b-a}{n}$ for all *i*. Then the *n*th approximation T_n to $\int_a^b f(x) dx$ using the trapezoid rule is

$$T_n = (f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 2f(x_{n-1}) + f(x_n))\frac{\Delta x}{2}$$

and

$$\left| \int_{a}^{b} f(x) \, dx - T_{n} \right| \le \frac{K(b-a)}{12} (\Delta x)^{2} = \frac{K(b-a)^{3}}{12n^{2}},$$

where K is an upper bound on |f''(x)| over [a,b]: $|f''(x)| \le K$ for $a \le x \le b$.

Simpson's Rule and Error Bound:

$$S_n = (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n))\frac{\Delta x}{3}$$

and

$$\left| \int_{a}^{b} f(x) \, dx - S_{n} \right| \le \frac{K(b-a)}{180} (\Delta x)^{4} = \frac{K(b-a)^{5}}{180n^{4}},$$

where n is even and K is an upper bound on $|f^{(4)}(x)|$ over [a,b]: $|f^{(4)}(x)| \le K$ for $a \le x \le b$.