Logarithms

Since perhaps it's been a while, calculate a few logarithms just to warm up.

- 1. Calculate the following.
 - (a) $\log_3(27) =$
 - (b) $\log_9(27) =$
 - (c) $\log_3(\frac{1}{9}) =$
 - (d) $\ln(e^3) =$
 - (e) $\log(-100) =$
 - (f) $\ln(0) =$

Just as there are properties of exponents (like $x^a x^b = x^{a+b}$) there are properties of logarithms – in fact, this should be expected since exponentials and logarithms are so closely related. We'll see how we can derive the properties of logarithms now.

- 2. Let's pick a base just to simplify things how about base 2. Let's say x is some number, and let's say $X = \log_2(x)$. Let's say y is some other number, and $Y = \log_2(y)$. Finally, let's say $Z = \log_2(xy)$.
 - (a) If $Z = \log_2(xy)$, write that as an exponential equation.
 - (b) If $X = \log_2(x)$, write that as an exponential equation.
 - (c) If $Y = \log_2(y)$, write that as an exponential equation.
 - (d) Take your answer to part (a), and substitute in your answers to parts (b) and (c). That is, $2^{Z} = = =$

$$f =$$
 = (part (a) result) = (parts (b) and (c) results)

(e) Using rules of exponents, rewrite your result from part (d).

$$2^{Z} = 2$$

- (f) From part (e), what can you say about the relationship between Z, X, and Y?
- (g) Substitute back in the definitions of Z, X, and Y. What results is a rule of logarithms.

3. Summarize your result in a general form (since the base being 2 was irrelevant in the previous question).

We won't prove the other rules explicitly here, but we'll talk about why they make sense.

- 4. The rules of exponents state that $a^{x+y} = a^x a^y$.
 - (a) If f is the function $f(x) = a^x$, that means that f(x+y) =_____.
 - (b) In other words, with exponential functions, if you add inputs, that's the same as ______ outputs.
 - (c) Since logarithms and exponential functions are inverses, that's why it makes sense that with logarithmic functions, if you ______ inputs, that's the same as ______ outputs.
 - (d) The rules of exponents state that $a^{x-y} = \frac{a^x}{a^y}$. In other words, with exponential functions, if you subtract inputs, you ______ outputs.
 - (e) That means that with logarithms, if you ______ inputs, you ______ outputs.
 - (f) Try to write a rule of logarithms that was just described in the previous question.
- 5. In this question, we'll develop our next rule.
 - (a) What is $\log_a(x \cdot x)$? You can use your result from Question 3 to rewrite this.
 - (b) What is $\log_a(x \cdot x \cdot x)$?
 - (c) What is $\log_a(x^4)$?
 - (d) What do you think $\log_a(x^{38})$ should be?
 - (e) Write a rule to summarize.

6. Summarize the rules you've found so far, in Questions 3, 4.f, and 5.e.

1.
2.
3.

Now we'll practice using these a bit. For example, we could rewrite the expression $\log_3(x) - \log_3(y) + 2\log_3(z)$ as follows:

$$\log_3(x) - \log_3(y) + 2\log_3(z) = \log_3\left(\frac{x}{y}\right) + \log_3(z^2) = \log_3\left(\frac{xz^2}{y}\right)$$

7. You try it. Use the rules of logarithms to write the following expressions as logarithms of one quantity with coefficient 1.

(a)
$$\frac{1}{2}\ln x + \ln 5$$

(b)
$$\log_2 x + 4 \log_2(x+1) - \frac{1}{3} \log_2(x-1)$$

(c)
$$5\ln x + 2\ln 3 - 3\ln\left(\frac{1}{y}\right)$$

- 8. What about the "other way?" Use the rules of logarithms to expand the following expressions so that there are no logarithms of products, quotients, or powers.
 - (a) $\ln \sqrt[3]{x^3y}$

(b)
$$\log_{10} \frac{10}{4x^2}$$

(c)
$$\ln\left(\frac{x\sqrt{y}}{(1+x)^3}\right)$$

9. Now use your critical thinking skills and the rules we've learned. Suppose $\ln x = 2$, $\ln y = 3$ and $\ln z = 6$. Evaluate the following.

(a) $\ln(xyz)$

(b) $\ln(x^2y)$

(c)
$$\ln\left(\frac{x^3}{\sqrt{z}}\right)$$

Our last set of properties involves changing the base of a logarithm or exponential function.

10. Can you simplify $3^{x \log_3(5)}$? (First, try to change the expression in the exponent.)

- 11. What about $e^{x \ln(7)}$?
- 12. Let's say I have 4⁵, and I want to write that as an expression with base 3 instead? That is, I want to write

$$4^5 = 3^{\text{something}}.$$

- Let's figure out how to do this.
- (a) Fill in the blank: $4^5 = 3^{\log_3(--)}$.
- (b) Use rules of logarithms to rewrite your exponent.
- 13. In general, if you have a^x , and you want to write that as $b^{\text{something}}$, you can do this. Write down the rule below.
- 14. Now let's see what the rule would be for logarithms, just by analogy. For exponentials, if you have a^x , and you want to write this with base b, you ______ the input by a factor of ______.
- 15. For logarithms, by analogy, if you have $\log_a(x)$, an you want to write this using logarithms with base b, you should ______ the output by a factor of ______.
- 16. The change of base formula for logarithms is:

Let's use these a bit.

- 17. Write $\log_3(5)$ as a logarithm with base 2.
- 18. Write $\ln(x)$ as a logarithm with base 10.
- 19. Simplify the expression $\log_3(5) + \log_9(5)$.
- 20. Write 5^x as an exponential with base e.
- 21. Write 2^7 as an exponential with base 10.
- 22. Write x^x as an exponential with base e.
- 23. Summarize the rules of logarithms so that you can remember them, making any notes to help you do so!