Inverse Trigonometric Functions

1. Trig functions don't really have inverses, because they're not ______

However, we can find partial inverses by restricting the domain.

- 2. Let's say we want to find the inverse sine function.
 - (a) Draw a graph of sin(x).

- (b) Pick an interval [a, b] such that sin(x) is 1-1 on that interval. There are options try to pick the most reasonable option.
- (c) What is the domain and range of sin(x) on this interval?
- (d) What should the domain and range of the inverse of sin(x) be? (We write $sin^{-1}(x)$ or arcsin(x) for the inverse of sin(x). Those two notations are equivalent.)

- 3. Now let's do the same for $\cos(x)$ and $\arccos(x)$.
 - (a) What would a good restricted domain be for $\cos(x)$ to make it 1-1?
 - (b) What should the domain and range of $\cos^{-1}(x)$ be?

(c) Find some points on the graph of $\cos^{-1}(x)$.

Before doing the same thing for $\tan^{-1}(x)$, let's talk a little more about computing inverse trig functions. Remember – for trig functions, you plug in an angle and get out a ratio/number, which means for inverse trig functions, you plug in a ratio/number and get out an angle. What makes them a little bit more difficult is the restrictions we have in place, because trig functions are not 1-1.

- 4. What is $\arccos(1)$?
- 5. What is $\arccos(-1)$?
- 6. What is $\arcsin(\frac{1}{2})$?
- 7. What is $\arcsin\left(-\frac{\sqrt{2}}{2}\right)$?
- 8. What is $\arcsin(-1)$?
- 9. What is $\arccos(-\frac{1}{2})$?
- 10. What is $\arctan(1)$?

- 11. Let's get back to graphing, and find the graph of $\arctan(x)$.
 - (a) Find a domain on which tan(x) is 1-1.

Remember how functions and their inverses should cancel each other out? That is, $(f \circ f^{-1})(x) = x$ and $(f^{-1} \circ f)(x) = x$. Well, when we deal with partial inverses and restricted domains, things can get a little screwy. Let's just see what might happen.

- 12. Start with a non-trig example. Hopefully you remember that \sqrt{x} is the partial inverse of $f(x) = x^2$.
 - (a) We can compute $(f^{-1} \circ f)(x)$, which in this case is $\sqrt{x^2}$. If x = 4, what is $(f^{-1} \circ f)(x)$?
 - (b) What is $(f \circ f^{-1})(x)$, if x = 4?
 - (c) Hopefully the first two parts worked out nicely. However, what if x = -4? Then what is $(f^{-1} \circ f)(x)$?
 - (d) What is $(f \circ f^{-1})(x)$, if x = -4?

These weird things happen because \sqrt{x} is only a partial inverse of x^2 . Similar weird things can happen when you compose trig functions and their inverses. Sometimes it works out nicely, but sometimes not...

- 13. What is $\sin(\arcsin(1))$?
- 14. What is $\sin(\arcsin(-\frac{1}{2}))$?
- 15. What is $\sin^{-1}(\sin(0))$?
- 16. What is $\arcsin(\sin(\frac{2\pi}{3}))$?
- 17. What is $\sin^{-1}(\sin(\frac{\pi}{3}))$?
- 18. What is $\arcsin(\sin(\frac{11\pi}{6}))$?
- 19. What is $\cos(\arccos(-\frac{1}{2}))$?
- 20. What is $\cos^{-1}(\cos(3\pi))$?
- 21. What is $\tan(\arctan(\sqrt{3}))$?
- 22. What is $\tan^{-1}(\tan(\pi))$?
- 23. What is $\tan^{-1}(\tan(-\frac{\pi}{3}))$?

One thing that comes up in calculus is simplifying expressions that involves trig and inverse trig functions. For example, you might want to simplify the expression $\sin(\arctan(\frac{x}{3}))$. This isn't too hard to do, with the aid of a triangle.

24. Consider $\arctan(\frac{x}{3})$. This quantity is an angle, because the arctan function spits out angles. Call this angle θ . Draw a right triangle, with θ as one of the angles.

25. If $\theta = \arctan(\frac{x}{3})$, then $\tan(-) = -$.

- 26. Label the sides of the triangle you drew with expressions involving x and 3. The Pythagorean Theorem may come in handy.
- 27. What is $\sin(\arctan(\frac{x}{3}))$?
- 28. What is $\tan(\arccos(\frac{1}{x}))$?

29. What is $\csc(\sin^{-1}(x))$? (This is an easy one...why?)

30. What is $\sec(\sin^{-1}(x))$?