Score: ______/20

Practice with Vectors

Please staple your work and use this page as a cover page.

1. On the given set of axes, sketch $\vec{v} + \vec{w}$, $\vec{w} - \vec{v}$, $2\vec{v}$, $-3\vec{w}$, and $2\vec{v} - 3\vec{w}$.

2. Let $\vec{v} = \langle 1, 11, 3 \rangle$ and $\vec{w} = \langle -2, 8, 6 \rangle$. Find $\vec{v} - \vec{w}$ and the unit vector \vec{u} pointing in the direction of $\vec{v} - \vec{w}$.

3. Find the angle between each given pair of vectors.

(a)
$$\vec{a} = \langle 2, 7 \rangle$$
, $\vec{b} = \langle 3, -1 \rangle$

(b)
$$\vec{v} = 3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - \hat{\mathbf{k}}, \ \vec{w} = -5\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$$

- 4. Find a vector that is orthogonal to each given pair of vectors.
 - (a) $\vec{a} = 2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 6\hat{\mathbf{k}}, \ \vec{b} = 3\hat{\mathbf{i}} 3\hat{\mathbf{j}} + \hat{\mathbf{k}}$
 - (b) $\vec{v} = \langle 10, 5, -3 \rangle, \ \vec{w} = \langle 4, 7, 2 \rangle$
- 5. James Bond is in a boat located at (1,6) and perceives that Mr. Green's boat is located at (-4,-2). If Bond's boat is currently facing in the direction $\langle -1,2\rangle$, find the angle the boat must turn through to be facing in the direction of Mr. Green's boat.
- 6. Suppose we apply a force $\vec{F} = \langle -6, 1, 11 \rangle$ (force is in Newtons) to move an object from (4, -3, -3) to (8, 1, 7) (distance is in m). Compute the work done by the force.
- 7. Consider the vector $\vec{a} = \langle -4, 5, 2 \rangle$.
 - (a) Find a vector \vec{b} that is orthogonal to \vec{a} (there are infinitely many possibilities!).
 - (b) Find a vector \vec{c} that is orthogonal to both \vec{a} and \vec{b} .
- 8. A particle moves in the direction $\langle 1, -3, 2 \rangle$. If a force of $\langle 2a, a, 3 \rangle$ Newtons is applied to the particle, for what value(s) of the constant a will the total work done by the force be zero?