Name: ____

Score: _____ /20

Curl and Divergence

Please staple your work and use this page as a cover page.

- 1. For each of the following, either compute the expression or explain why it doesn't make sense. Assume that $f(x, y, z) = x^2y + xz 1$ and $\vec{F} = \langle z, x, y \rangle$.
 - (a) $\operatorname{div}(\operatorname{curl} f)$
 - (b) $\operatorname{curl}(\operatorname{div}\vec{F})$
 - (c) $\vec{\nabla} f \cdot \vec{F}$
 - (d) $\operatorname{curl} \vec{\nabla} f$
 - (e) $\operatorname{curl}\vec{F} + \operatorname{div}\vec{F}$
 - (f) div $(\vec{\nabla}f + \vec{F})$
- 2. Using the same scalar function f(x, y, z) and vector field $\vec{F} = \langle z, x, y \rangle$ given above, evaluate each of the following expressions. You may use the Fundamental Theorem for Line Integrals or Green's Theorem if they apply.
 - (a) $\int_{C_1} \operatorname{curl} \vec{F} \cdot d\vec{r}$, where C_1 is the line segment from (-1,3,5) to (3,-1,-2)
 - (b) $\int_{C_2} \vec{\nabla} f \cdot d\vec{r}$, where C_2 is the portion of the parabola given by $\vec{r}(t) = \langle t^2, t, 3t \rangle$ with $-1 \leq t \leq 1$
 - (c) $\int_{C_3} \operatorname{div} \vec{F} \, ds$, where C_3 is the curve given by $\vec{r}(t) = \langle e^{t^2}, \ln(t^3 + 1), 1 \rangle$ with $0 \leq t \leq 5$
 - (d) $\int_{C_4} \operatorname{curl} \vec{F} \cdot d\vec{r}$, where C_4 is the ellipse given by $\vec{r}(t) = \langle \cos t, \sin t, \cos t \rangle$ with $0 \leq t \leq 2\pi$