11.9 Representations of Functions as Power Series

Power Series, Derivatives, and Integrals. If the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ has a radius of convergence R > 0, then the function f defined by

$$f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \dots = \sum_{n=0}^{\infty} c_n(x - a)^n$$

is differentiable (and therefore continuous) on the interval (a - R, a + R) and

(i)
$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \dots = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$$

(ii)
$$\int f(x) dx = C + c_0(x - a) + c_1 \frac{(x - a)^2}{2} + c_2 \frac{(x - a)^3}{3} + \dots = C + \sum_{n=0}^{\infty} c_n \frac{(x - a)^{n+1}}{n+1}$$

The radii of convergence of the power series in Equations (i) and (ii) are both R.

Alternating Series Estimation Theorem. If $s = \sum (-1)^{n-1}b_n$ is the sum of an alternating series that satisfies

- (i) $b_{n+1} \le b_n$ for all n
- (ii) $\lim_{n\to\infty} b_n = 0$

then

$$|R_n| = |s - s_n| \le b_{n+1}.$$

Geometric Power Series.

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n \qquad |x| < 1.$$

1. **Example:** Find a power series centered at x = 0 for the following functions and find the interval of convergence of the power series.

$$\frac{1}{2-5x}$$

Thinking about the problem:

Which technique should I use to determine the power series for the function given? Have I seen a problem similar to this one before? If so, which technique did I use?

I see that my function looks very similar to the function $\frac{1}{1-x}$, so I will alter my function to match that form. To make my function look like $\frac{1}{1-x}$, I will factor a 2 out of the denominator so my function looks like $\frac{1}{2(1-5x/2)}$. At this point, I think my function is close enough to $\frac{1}{1-x}$ so that I can find a power series. I note that the interval of convergence of the power series of $\frac{1}{1-x}$ is (-1,1), so my power series should have a similar interval of convergence.

Doing the problem:

The problem asks to find a power series of a function. $f(x) = \frac{1}{2-5x}$ can simply f as follows: I see that

$$\frac{1}{2-5x} = \frac{1}{2(1-5x/2)} = \frac{1}{2} \cdot \frac{1}{1-5x/2}.$$

Using the PS representation $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$, then $\frac{1}{1-5x/2} = \sum_{n=0}^{\infty} (5x/2)^n$. So I find that

$$\frac{1}{2-5x} = \frac{1}{2} \cdot \frac{1}{1-5x/2} = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{5x}{2}\right)^n = \sum_{n=0}^{\infty} \frac{(5x)^n}{2^{n+1}}.$$

I have now found a power series centered at x=0 for $\frac{1}{2-5x}$. Next, I will find the interval of convergence. Since the radius of convergence of $\sum_{n=0}^{\infty} x^n$ is |x|<1, then the radius of convergence for $\sum_{n=0}^{\infty} \left(\frac{5x}{2}\right)^n$ is $\left|\frac{5x}{2}\right|<1$, so $|x|<\frac{2}{5}$. Therefore the interval of convergence of $\sum_{n=0}^{\infty} \left(\frac{5x}{2}\right)^n$ is $\left(-\frac{2}{5},\frac{2}{5}\right)$ and so the interval of convergence of $\sum_{n=0}^{\infty} \left(\frac{5x}{2}\right)^n$ is also $\left(-\frac{2}{5},\frac{2}{5}\right)$.

2. Find a power series centered at x=0 for the following functions and find the interval of convergence of the power series.

$$\frac{1}{1+x^4}$$

Solutions should show all of your work, not just a single final answer.

3. Find a power series centered at x = 0 for the following functions and find the interval of convergence of the power series.

$$\frac{1}{(1-x)^3}$$

- (a) What is the power series centered at x=0 for $\frac{1}{1-x}$? What is the radius of convergence for this power series?
- (b) What is the second derivative of $\frac{1}{1-x}$?
- (c) What is the power series of the second derivative of $\frac{1}{1-x}$?
- (d) What is the radius of convergence of the power series in (c)?
- (e) Use (b) and (c) to find the power series of $\frac{1}{(1-x)^3}$.

- 4. Use power series to estimate $\int_0^{1/2} \frac{dx}{1+x^4}$ to within .00001 by the following steps.
 - (a) Express $\int \frac{dx}{1+x^4}$ as a power series, starting with the power series you found in 3.

- (b) Find the radius of convergence of the power series in part a.
- (c) Use the previous parts and the Alternating Series Estimation Theorem to estimate $\int_0^{1/2} \frac{dx}{1+x^4}$ to within .00001. Round your *estimate* to 5 digits.

5. T/F (with justification)

If $\sum_{n=0}^{\infty} c_n x^n$ has radius of convergence 3 then $\sum_{n=0}^{\infty} c_n x^{2n}$ has radius of convergence 9.