11.2 Series

Series. Given a series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, let s_n denote its nth partial sum:

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n.$$

If the sequence $\{s_n\}$ is convergent and $\lim_{n\to\infty} s_n = s$ exists as a real number, then the series $\sum_{n=1}^{\infty} a_n$ is called <u>convergent</u> and we write

$$a_1 + a_2 + \dots + a_n + \dots = s \text{ or } \sum_{n=1}^{\infty} a_n = s.$$

If the sequence $\{s_n\}$ is divergent, then the series is called <u>divergent</u>.

The Geometric Series. The geometric series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

is convergent if |r| < 1 and the sum is

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} \qquad |r| < 1.$$

If $|r| \ge 1$, the geometric series is divergent.

Test for Divergence. If $\lim_{n\to\infty} a_n$ does not exist or $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

1. **Example:** Compute the following series *exactly*. Write "divergent" if it diverges.

$$\sum_{n=0}^{\infty} \left(\frac{4}{11}\right)^n$$

Thinking about the problem:

Which test should I use to determine whether the series converges or diverges and why? Have I seen a problem similar to this one before? If so, which test did I use?

To determine which test to use, I will focus on the nth term, that is, $a_n = \left(\frac{4}{11}\right)^n$. In this case, I think I will use what I know about geometric series because the nth term looks like a number to the nth power. Geometric series are written as $\sum_{n=1}^{\infty} ar^{n-1}$, so I will need to determine a and r in $\sum_{n=0}^{\infty} \left(\frac{4}{11}\right)^n$. After I find a and r, I can follow through by checking if |r| < 1 and, if so, I can compute the value of $\sum_{n=0}^{\infty} \left(\frac{4}{11}\right)^n$.

Doing the problem:

I see that

$$\sum_{n=0}^{\infty} \left(\frac{4}{11} \right)^n = 1 + \left(\frac{4}{11} \right) + \left(\frac{4}{11} \right)^2 + \dots$$

and

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

so I can compare each term to find that a=1 and $r=\frac{4}{11}$. Now I know that $\sum_{n=0}^{\infty} \left(\frac{4}{11}\right)^n$ is a geometric series, so I can use what I know about the convergence of geometric series.

Since
$$|r| = \left|\frac{4}{11}\right| < 1$$
, I know that $\sum_{n=0}^{\infty} \left(\frac{4}{11}\right)^n$ converges and converges to

$$\frac{a}{1-r} = \frac{1}{1-4/11} = \frac{11}{7}.$$

Solutions should show all of your work, not just a single final answer.

2. Compute the following series exactly. Write "divergent" if it diverges.

$$\sum_{n=1}^{\infty} \frac{7^n}{4^{n+3}}$$

- (a) Which test or tests could you use to determine whether the series converges or diverges?
- (b) State the test you would use to decide whether the series converges or diverges.
- (c) Write out the first 4 (four) terms of $\sum_{n=1}^{\infty} \frac{7^n}{4^{n+3}}$. Write out the first 4 (four) terms of $\sum_{n=1}^{\infty} ar^{n-1}$. Compare terms to find an a and r so that $\sum_{n=1}^{\infty} \frac{7^n}{4^{n+3}} = \sum_{n=1}^{\infty} ar^{n-1}$.

- 3. Use geometric series to convert the repeating decimal $.9\overline{34} = .934343434...$ into a fraction in reduced form.
 - (a) Can you write $.9\overline{34} = .934343434...$ as a geometric series?

(b) If
$$.9\overline{34} = .934343434... = \sum_{n=1}^{\infty} ar^{n-1}$$
, what is a?

(c) If
$$.9\overline{34} = .934343434... = \sum_{n=1}^{\infty} ar^{n-1}$$
, what is r ? Is $|r| < 1$?

(d) Use the geometric series found in (a) through (c) to convert $.9\overline{34} = .934343434...$ into a fraction.

- 4. For the series $\sum_{n=1}^{\infty} \left(\frac{1}{n} \frac{1}{n+3}\right)$, determine a formula for its Nth partial sum. If the series converges, determine its value exactly.
 - (a) Write the first 5 (five) terms of $\sum_{n=1}^{\infty} \left(\frac{1}{n} \frac{1}{n+3} \right)$.
 - (b) Determine a formula for the Nth partial sum of $\sum_{n=1}^{\infty} \left(\frac{1}{n} \frac{1}{n+3} \right)$.
 - (c) Take the limit of the Nth partial sum of $\sum_{n=1}^{\infty} \left(\frac{1}{n} \frac{1}{n+3}\right)$ as $N \to \infty$.

- 5. T/F (with justification): If $a_n \to 0$ as $n \to \infty$ then the series $\sum_{n=1}^{\infty} a_n$ converges.
- 6. T/F (with justification): The convergence of a series $\sum_{n=1}^{\infty} a_n$ is unaffected by dropping its first few terms.