11.1 Sequences

Remember: A sequence is a list of numbers a_1, a_2, a_3, \ldots We call it increasing if $a_n < a_{n+1}$ for all n, decreasing if $a_n > a_{n+1}$ for all n, and monotonic if it is either increasing for all n or decreasing for all n. If the terms a_n have a limiting value as $n \to \infty$ then we say that the sequence converges (or is convergent). Otherwise, the sequence diverges (or is divergent).

Example: Is the sequence $a_n = \frac{n^4}{n^4 + 1}$ convergent or divergent?

Thinking about the problem:

Let's compute and then plot some values to get a sense of what a_n looks like. See below.

n	1	2	3	4	5	6	7	8
$\overline{a_n}$.5	.94118	.9878	.99611	.9984	.99923	.99958	.99976

The values appear to be tending to 1.

Doing the problem:

Factor out the highest degree part of the numerator and denominator:

$$\frac{n^4}{n^4+1} = \frac{\cancel{n}^4 \cdot 1}{\cancel{n}^4 (1+1/n^4)} = \frac{1}{1+1/n^4},$$

which tends to 1 as $n \to \infty$. Thus the sequence converges with limit 1.

Solutions should show all of your work, not just a single final answer.

- 1. For each of the following recurrence relations compute a_n for n = 1, 2, ..., 5 and then find an explicit formula for a_n in terms of n and determine if the sequence is monotonic.
 - (a) $a_{n+1} = 2 a_n$ where $a_1 = 2$.

n	1	2	3	4	5
a_n					

(b) $a_{n+1} = 3a_n$ where $a_1 = 2$.

n	1	2	3	4	5
a_n					

- 2. Let $a_n = \frac{(-1)^{n-1}}{n}$.
 - (a) Compute a_n rounded to 3 digits after the decimal point and plot it against n for n = 1, 2, ..., 8.

n	1	2	3	4	5	6	7	8
a_n								

(b) Compute $s_n = \sum_{k=1}^n a_k$ for n = 1, 2, ..., 8 rounded to three digits after the decimal point and then plot s_n vs. n for n = 1, 2, ..., 8.

n	1	2	3	4	5	6	7	8
$\overline{s_n}$								

- 3. Let $a_n = \left(1 + \frac{1}{2n}\right)^n$ for $n \ge 1$. We want to determine if this sequence converges, and if it does then show calculations that lead to the limit.
 - (a) Compute a_n rounded to 3 digits after the decimal point and plot it against n for n = 1, 2, ..., 8.

n	1	2	3	4	5	6	7	8
a_n								

(b) From the data in (a), what seems to be an approximation to the limit of the terms a_n ?

(c) Calculate $\lim_{n\to\infty} a_n$.

(*Hint*: As $n \to \infty$, $\left(1 + \frac{1}{n}\right)^n \to e$. Rewrite $\left(1 + \frac{1}{2n}\right)^n$ as $\left(\left(1 + \frac{1}{2n}\right)^{2n}\right)^{1/2}$ and remember that as $n \to \infty$ also $2n \to \infty$.)

4. Determine the limit of the sequence $a_n = \frac{\cos n}{\sqrt{n}}$ or state the limit does not exist. If there is a limit, show calculations that explain how you find the limit.

5. T/F (with justification): Every bounded sequence is convergent.