Section 5.2: Areas and Distances

(1) In this section, we expand upon our understanding of finding areas under curves. How do we express the definite integral from x = a to x = b of a function f(x)? What is the geometric interpretation of this if f(x) > 0, and if f(x) takes on both positive and negative values.

(2) How do we define the definite integral?

- (3) Under what conditions does the definite integral exist?
- (4) What is the difference between displacement and distanced traveled? How can you find each from the graph of a velocity function?
- (5) How can we find the exact value of a definite integral from the graph of the function?

(6) Complete the statement assuming b is a number between a and c. Draw a picture to illustrate why it is true.

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx =$$

- (7) Complete each statement below, then explain geometrically in terms of area under a curve.
 - curve. (a) $\int_a^b c \, dx =$ where c is any constant. Explanation:
 - (b) $\int_a^b [f(x) \pm g(x)] dx =$ Explanation:
 - (c) $\int_a^b cf(x) dx =$ where c is any constant. Explanation:
 - (d) $\int_{b}^{a} f(x) dx =$ Explanation:
 - (e) If $f(x) \ge 0$ for $a \le x \le b$, then Explanation:
 - (f) If $f(x) \ge g(x)$ for $a \le x \le b$, then Explanation:
 - (g) If $, \le f(x) \le M$ for $a \le x \le b$, then Explanation: