Section 2.5: Continuity

(1) What is the definition of a function being continuous at a number a ? What three things to to be true this to happen?
(2) For each of the three ways to fail above we get a different type of discontinuity.
(a) If the function is not continuous at $x=a$ because $f(a)$ is undefined, what type of discontinuity do we get? Illustrate with a graph.
(b) If the function is not continuous at $x=a$ because the limit does not exist because the left hand and right hand limits are not equal, what type of discontinuity do we get? Illustrate with a graph.
(c) If the function is not continuous at $x=a$ because the limit does not exist because (at least) one side approaches infinity, what type of discontinuity do we get? Illustrate with a graph.
(3) What does it means for a function to be continuous from the left at $x=a$? Continuous from the right? How can you tell if a piecewise function is continuous from the left or right?
(4) For non-piecewise defined functions, the standard ones are defined at every point in their domain. The big three things we need to remember is that we can't divide by 0 , can't take the square (or other even) root of a negative number and can't take the \log of 0 or a negative. For piecewise functions, you need to check that the functions meet up where the functions change. Write a few sentences about how to check if a piecewise function is continuous.
(5) What does the Intermediate Value Theorem say? What are the conditions that need to be met in order to reach the conclusion of IMT? Draw a picture of a function that does not satisfy the conclusion of the IMT because it is not continuous.

Extra Practice in Book: 2.4:1, 3, 7, 19, 23, 43, 46, 50, 52

