Section 2.4: The Precise Definition of a Limit

- (1) Explain the precise definition of a limit in your own words. What is the role of δ and of ε ?
- (2) You will be asked to find a δ given a specific ε in both graph questions and given functions (usually linear). If you are given a specific value for ε you should get a specific value for δ . If you are asked to do it for a general ε , then your answer for δ will be in terms of ε . Let's practice that in an example. Let f(x) = 2x + 1. We will show that $\lim_{x\to 3} f(x) = 7$
 - (a) Fill in the blanks:

For every _______ there exists ______, such that ______< ε whenever ______< δ .

- (b) Let $\varepsilon = .5$. Find δ so that $|f(x) 7| < \varepsilon$ whenever $|x 3| < \delta$. Illustrate with a graph.
- (c) Let $\varepsilon = .01$. Find δ so that $|f(x) 7| < \varepsilon$ whenever $|x 3| < \delta$. Illustrate with a graph.
- (d) Find δ (in terms of ε) so that $|f(x) 7| < \varepsilon$ whenever $|x 3| < \delta$. Illustrate with a graph.

Extra Practice in Book: 2.4:1, 3, 11, 15, 17