

Матн 1131	PRACTICE EXAM 2	Ι	Fall 201' 8	
NAME: Solutions.				
Signature:				
Instructor Name:		Lecture Section:		
TA Name:		Discussion Section:		

Read This First!

- Please read each question carefully. All questions are multiple choice. There is only one correct choice for each answer. Each question is one point.
- Indicate your answers on the answer sheet. The answer sheet is the **ONLY** place that counts as your official answers.
 - (1) When you're done, hand in **both** the exam booklet and the answer sheet.
 - (2) You will receive the exam booklet back after the exam is graded. The booklet is not graded, but you may circle answers there for your records.
- Calculators are allowed below the level of TI-89. In particular, the TI-Nspire is not allowed. No books or other references are permitted.

1. Determine f'(1) for the function $f(x) = (x^3 - x^2 + 1)(x^4 - x + 2)$.

$$f'(x) = (x^3 - x^2 + 1)(4x^3 - 1) + (3x^2 - 2x)(x^4 - x + 2)$$

$$f'(1) = (1 - 1 + 1)(4 - 1) + (3 - 2)(1 - 1 + 2)$$

$$= (1)(3) + (1)(2) = 5$$

2. Find the equation of the tangent line to the curve $y = \frac{x}{x+1}$ at x = 1.

2. Find the equation of the tangent line to the curve
$$y = \frac{1}{x+1}$$
 at $x = 1$.

(A) $y = \frac{1}{2}$ (B) $y = -\frac{1}{2}x + 1$ (C) $y = \frac{1}{2}x$

(D) $y = -\frac{1}{4}x + \frac{3}{4}$ (E) $y = \frac{1}{4}x + \frac{1}{4}$

$$y' = \frac{(X+1) \cdot 1 - X \cdot (1)}{(X+1)^2} \qquad y'(X=1) = \frac{2-1}{(2)^2} = \frac{1}{4}$$

$$y'(X=1) = \frac{1}{1+1} = \frac{1}{2}$$

Pf (1, 1/2) $M = \frac{1}{4}$

3. If
$$f(x) = \sin(x)$$
, determine $f^{(125)}(\pi)$.

(A) 1
$$(B)$$
 -1 (C) (

(D)
$$1/2$$
 (E) $\sqrt{2}/2$

$$f'(x) = \omega s x$$

$$f''(x) = -\sin x$$

$$f'''(x) = -\omega s x$$

$$f'''(x) = -(-\sin x)$$

$$= \sin x$$

Recognise the pattern on whom the derivatives are being repeated so
$$125 = 4.(31) + 1$$

$$f(125)$$

$$f(X) = \cos X$$

$$f(125)$$

4. To compute the derivative of $\sin^2 x$ with the chain rule by writing this function as a composition f(g(x)), what is the "inner" function g(x)?

(A)
$$x$$
 (B) x^2 (C) $\sin x$

(D) $\sin^2 x$ (E) None of the above

$$f(g(x)) = (\sin x)^{2} = \sin^{2} x$$

$$\frac{d}{dx}(\sin x)^{2} = 2 \cdot \sin x \cdot \frac{d}{dx} \sin x$$

$$= 2 \cdot \sin x \cdot \cos x$$

[1]

5. Let y = f(x)g(x). Using the table of values below, determine the value of $\frac{dy}{dx}$ when x = 2.

\boldsymbol{x}	f(x)	f'(x)	g(x)	g'(x)
1	5	2	4	4
2	3	4	1	3
3	2	· 3	2	2
4	4	1	5	5
5	1	5	3	1

$$y' = f(x) \cdot g(x)$$

 $y' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
 $y' = f'(2) \cdot g(2) + f(2) \cdot g'(2) = 4 \cdot 1 + 3 \cdot 3$
 $x = 2$ = 4 + 9 = 13.

6. For the function $f(x) = 2\sin x - 3\cos x$ determine $f'''(\pi/2)$, its third derivative at $x = \pi/2$.

(A) 2 (B)
$$-2$$
 (C) 3

$$(D) -3$$
 (E) 1

$$f(x) = 2\sin x - 3\cos x$$

$$f'(x) = 2 \cos x - 3(-\sin x)$$

$$f''(x) = -2\sin x + 3\cos x$$

$$f'''(X) = -2 \cos X - 3 \sin X$$

$$f'''(x=1/2) = -2 \cos 1/2 - 3 \sin (1/2) = -3(1) = -3$$

7. If $g(x) = \frac{ax+b}{cx+d}$, where a, b, c, and d are constants, then g'(1) is which of the following?

(A)
$$\frac{a+b-c-d}{c+d}$$

(A)
$$\frac{a+b-c-d}{c+d}$$
 (B) $\frac{ad-bc}{(c+d)^2}$ (C) $\frac{a+b-c-d}{(c+d)^2}$

(D)
$$\frac{ad + bc}{c + d}$$

(D)
$$\frac{ad+bc}{c+d}$$
 (E) $\frac{ad+bc}{(c+d)^2}$

$$g'(x) = (cx+d).(a) - (ax+b)(c) g'(1) = \frac{(c+d)a - (a+b)c}{(c+d)^2}$$

$$= \frac{c\cdot a + a \cdot d - a \cdot c - c \cdot b}{(c+d)^2}$$

$$= \frac{ad - bc}{(c+d)^2}$$

8. For the function $f(x) = x^3 \arctan(x)$, which of the following is f'(1)?

(A)
$$\frac{3\pi}{4}$$
 (B) $\frac{3\pi}{4} + \frac{1}{2}$ (C) $\frac{1}{2}$

(C)
$$\frac{1}{2}$$

(D)
$$\frac{\pi}{4}$$
 (E) $3\tan(1) + \sec^2(1)$

$$f'(x) = 3x^2 \arctan(x) + x^3 \frac{1}{1+x^2}$$

$$f(1) = 3(1) \cdot \arctan(1) + 1^{3} \cdot \frac{1}{1+1^{2}}$$

$$= 3 \cdot (1) \cdot \frac{\pi}{4} + \frac{1}{2}$$

$$= \frac{3\pi}{4} + \frac{1}{2}$$

9. On the curve $x^y = y^x$ with x and y both positive, $\frac{dy}{dx}$ is which of the following?

[1]

$$(A) \frac{1 - \ln x}{1 - \ln y}$$

(B)
$$x^{y-x} \ln x$$

(A)
$$\frac{1 - \ln x}{1 - \ln y}$$
 (B) $x^{y-x} \ln x$ (C) $(1 - \ln x) \frac{y}{x}$

(D)
$$(1 - \ln y) \frac{y}{x}$$

(D)
$$(1 - \ln y)\frac{y}{x}$$
 (E) $\left(\frac{y}{x}\right)\left(\frac{x\ln y - y}{y\ln x - x}\right)$

$$X' = y$$

$$\ln x^{y} = \ln y^{x}$$

$$y \ln x = x \cdot \ln y$$

$$(y \cdot \frac{1}{x} + y' \cdot \ln x) = 1 \cdot \ln y + x \cdot \frac{1}{y} \cdot y'$$

$$y' \ln x - \frac{x}{y} y' = \ln y - \frac{y}{x}$$

$$y' = \frac{(\ln y - \frac{y}{x})}{(\ln x - \frac{x}{y})} = \frac{x \ln y - y}{x}$$

$$= \frac{(x \ln y - y)}{(y \ln x - x)} \cdot \frac{y}{x}$$

10. Find $\frac{d}{dx} \left[x^{\ln x} \right]$.

(A) $(\ln x)x^{\ln x}$

(B)
$$2(\ln x)x^{(\ln x)+1}$$

(C)
$$x^{(\ln x)-1}$$

(D)
$$2(\ln x)x^{\ln x}$$

$$(E) 2(\ln x)x^{(\ln x)-1}$$

$$y = x \ln x$$

$$\ln y = \ln x \cdot \ln x$$

$$\ln y = (\ln x)^{2}$$

$$\perp y' = 2 \ln x \cdot \perp x$$

$$y' = 2 \ln x \cdot \perp x$$

$$y' = 2 \ln x \cdot y$$

$$y' = \frac{2\ln x}{x} \cdot x^{\ln x}$$

$$= 2\ln x \cdot x$$

11. On the curve $xy^3 = x - y$, which of the following is $\frac{dy}{dx}$?

(A)
$$\frac{1-y^2}{1+2xy^2}$$
 (B) $\frac{1-y^3}{1-3xy^2}$ (C) $\frac{1+y^3}{1+3xy^2}$

(D)
$$\frac{1+y^2}{1+3xy^2}$$
 (E) $\frac{1-y^3}{1+3xy^2}$

$$X.3y^{2}.y' + 1.y^{3} = 1 - y'$$

$$(3xy^{2} + 1)y' = 1 - y^{3}$$

$$y' = \frac{1 - y^{3}}{(3xy^{2} + 1)}$$

12. The size of a colony of bacteria at time t hours is given by $P(t) = 100e^{kt}$, where P is measured in millions. If P(5) > P(0), then determine which of the following is true.

I.
$$k > 0$$

II.
$$P'(5) < 0$$

III.
$$P'(10) = 100ke^{10k}$$

- (A) and III only.
- (B) I and II only.
- (C) I only.

- (D) II only.
- (E) I, II, and III.

PH) = 100 eKt is an exponential model, that is a solution to differential Eqn $\frac{df}{dt} = k \cdot p$ with p(o) = 100If p(s) > p(o), then the population is growing so k > 0If $p'(t) = 100k \cdot e^{kt}$; $p'(s) = 100k \cdot e^{sk} > 0 \Rightarrow \text{II}$ false $p'(10) = 100k \cdot e^{lok} \Rightarrow \text{III}$ True

[1]

13. Suppose that the half-life of a certain substance is 20 days and there are initially 10 grams of it. The amount of the substance, in grams, remaining after t days is

- 14. Atmospheric pressure (the pressure of air around you) goes down as your height above sea level goes up. It decreases exponentially by 12% for every 1000 meters of added height. The pressure at sea level is 101.3 kilopascals. The pressure in kilopascals at height h meters above sea level is given by
- (A) $1000e^{10h}$ (B) $\ln(101.3)e^{kh/12}$ (C) $101.3e^{\ln(0.88)/1000}$ (D) $1000e^{-h\ln(2)/20}$ (E) $101.3e^{h\ln(0.88)/1000}$ P(h)=101.3 P(1000) = 101.3 (0.12)101.31 = 89.144h=0 h=1000(sealevel)

 k.h

 P(h) = Po e

 k.1000P(1000) = 89.144 = 101.3 e $101.3e^{h\ln(0.88)/1000}$ $101.3e^{h\ln(0.88)/1000}$ 1

15. A particle moves along the curve $y^3 = x^4 + 11$. When it reaches the point (2,3), the y-coordinate is increasing at a rate of 32 cm/s. Which of the following represents the rate of increase of the x-coordinate at that instant?

(C) 13.5 cm/s

(D) 6.75 cm/s (E) None of the above

$$\frac{dy}{dt} = 32 \text{ cm/s} \qquad y^3 = x^4 + 11$$

$$x = 2$$

$$y = 3$$

$$y^3 = x^4 + 11$$

$$3y^2 \frac{dy}{dt} = 1$$

$$y^{3} = x^{4} + 11$$

$$3y^{2} \frac{dy}{dt} = 4x^{3} \frac{dx}{dt}$$

$$3(3)^{\frac{1}{3}}32 = 4(2)^{\frac{3}{4}}\frac{dx}{dt}$$

$$\frac{dx}{dt} = \frac{27cm}{s}$$

16. Water is withdrawn at a constant rate of 2 ft³/min from an inverted cone-shaped tank (meaning the vertex is at the bottom). The diameter of the top of the tank is 4 ft, and the height of the tank is 8 ft. How fast is the water level falling when the height of the water in the tank is 2 ft? (Note: the volume of a cone of height h and base a circle of radius r is $\frac{1}{3}\pi r^2 h$.)

(A)
$$\frac{2}{\pi}$$
 ft/min

(B)
$$\frac{4}{\pi}$$
 ft/min

(A)
$$\frac{2}{\pi}$$
 ft/min (B) $\frac{4}{\pi}$ ft/min (C) $\frac{6}{\pi}$ ft/min

$$(D) \frac{8}{\pi}$$
 ft/min

(D)
$$\frac{8}{\pi}$$
 ft/min (E) $\frac{16}{\pi}$ ft/min

$$\frac{2}{8} = \frac{r}{h} \qquad f = \frac{1}{4}h$$

$$V = \frac{1}{3} \pi r^{2}h$$

$$= \frac{1}{3} \pi \left(\frac{1}{4}h\right)^{2} h = \frac{\pi}{48}h^{3}$$

$$V = \frac{\pi}{48}h^{3} \qquad \frac{dh}{dt}$$

$$2 = \frac{\pi}{48i} \frac{3}{48}h^{2} \frac{dh}{dt}$$

$$2 = \frac{\pi}{48i} \frac{3}{48}h^{2} \frac{dh}{dt}$$

$$\frac{dh}{dt} = \frac{8}{\pi} \frac{H}{min}$$

Page 8 of 9

17. Use the linearization for the function $f(x) = \sqrt{x^3 + 2x + 1}$ at x = 1 to approximate the value of f(1.1).

- (A) 2.0125 (B) 2.10 (C) 2.125
- (D) 0.5 (E) 1.925

$$f(x) = (x^{3} + 2x + 1)^{1/2} \qquad f(1) = 2$$

$$f'(x) = \frac{1}{2(x^{3} + 2x + 1)} \qquad f'(1) = \frac{5}{4}$$

$$L(X) = f(\alpha) + f'(\alpha)(X - \alpha)$$

$$L(X) = 2 + \frac{5}{4}(X - 1)$$

$$L(1 - 1) = 2 + \frac{5}{4}(1 - 1 - 1) = 2 \cdot 125$$

18. Let $f(x) = x^2 - 10$. If $x_1 = 3$ in Newton's method for solving f(x) = 0, determine x_2 .

(A) 1/2 (B) 19/6 (C) 15/4 (D) 12/7 (E) 17/6

$$f(x) = x^{2}-10$$

$$f'(x) = 2x$$

$$x_{1} = 3$$

$$f(x_{1}) = f(3) = 3^{2}-10 = 1$$

$$f'(x_{1}) = f'(3) = 2 \cdot 3 = 6$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$
 $x_3 = 3 - \frac{f(x_1)}{6}$
 $x_4 = 196$