Applications of Derivatives

Name:

Section No: _____

Logarithmic Differentiation

1. Use logarithmic differentiation to compute dy/dx. Write final answers in terms of x.

(a) $y = x^{\cos x}$ (b) $y = x^{2x}$ (c) $y = (x+1)^x$.

Exponential Growth and Decay

- 2. The element Unobtainium has a half-life of 3 years.
 - (a) Determine the differential equation governing the decay of an initial mass of Unobtainium, measuring time in years. Your equation should not have any undetermined parameters in it.
 - (b) In how many years will a 14 kg mound of Unobtainium shrink to 1 kg? Round your answer to the nearest tenth.
- 3. Starbucks serves coffee at 180° and room temperature in Starbucks is 75° .
 - (a) If the coffee at time t = 0 (in minutes) has temperature 180° , write down a differential equation for its temperature T(t) at time t > 0. Your equation will involve an unknown "k" that depends on the coffee.
 - (b) If the coffee is 120° after 10 minutes, how much additional time (from this moment) will it take for the temperature of the coffee to reach 100°? Round your answer to the nearest tenth.

Newton's Method

4. On the graph of $y = x^2 - 3$ (see Figure 1), draw two successive tangent lines in Newton's method for solving $x^2 - 3 = 0$ when $x_1 = 1$.

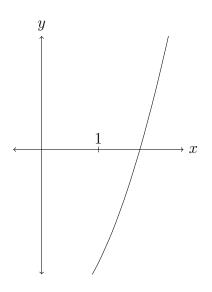


Figure 1: Graph of $y = x^2 - 3$.

5. The solutions to $\sin x = 0$ are $x = \pi k$, where k is an integer (see Figure 2). In particular, the smallest positive solution to $\sin x = 0$ is $x = \pi$.

You will use Newton's method for $\sin x = 0$ to make numerical estimates for π .

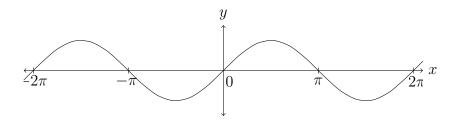


Figure 2: Graph of $y = \sin x$.

- (a) What is the recursion formula for Newton's method to solve $\sin x = 0$?
- (b) Using Newton's method for $\sin x = 0$ with $x_1 = 3$, tabulate x_n to find the first n for which x_n and x_{n+1} agree to 5 digits after the decimal point. (Be sure you compute trigonometric functions using radians, *not* degrees!)
- (c) For the *n* you found in part b, to how many digits after the decimal point does x_n actually agree with π ?
- 6. In Figure 3 is the graph of $f(x) = \ln(x) 1$ for 0 < x < 4. It crosses the x-axis at x = e.

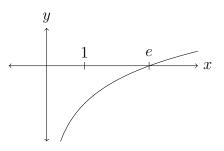


Figure 3: Graph of $y = \ln(x) - 1$.

- (a) Write out the recursion for Newton's method used to solve f(x) = 0.
- (b) Using Newton's method for the equation $\ln(x) 1 = 0$ with $x_1 = 1$, tabulate x_n to find the first n for which x_n and x_{n+1} agree to 5 digits after the decimal point.
- (c) For the *n* you found in part b, to how many digits after the decimal point does x_n actually agree with e?