Section Objectives: Sketch a graph of a function by

- Finding the domain of the function.
- Determining the symmetries of the functions
- Finding the horizontal and vertical asymptotes
- Finding the x and y intercepts.
- Using the first derivative to find where the function is increasing or decreasing and the relative extrema.
- Using the second derivative to find where the function is concave up or concave down and the inflections points.
- Putting all the above information together.

Practice Problems

0

1. Let
$$f(x) = \frac{x^2}{x^2 - 1}$$
. Use the steps listed above to sketch a graph of the function.
Domain: $\chi^2 - 1 \neq 0$
 $\Rightarrow (x - n)(x + n) \neq 0$
 $x \neq 1_{1 - 1}$
f $(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{x^2}{x^{2 - 1}} = f(x)$
e Symmetric across $y - ax^{1/2}$ (arright $x = 1$)
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{x^2}{x^{2 - 1}} = f(x)$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{x^2}{x^{2 - 1}} = f(x)$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{x^2}{x^{2 - 1}} = f(x)$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{x^2}{x^{2 - 1}} = f(x)$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{x^2}{x^{2 - 1}} = f(x)$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{x^2}{x^{2 - 1}} = f(x)$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{x^2}{x^{2 - 1}} = f(x)$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{(-x)^2}{(-x)^2 - 1}$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{(-x)^2}{(-x)^2 - 1}$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{(-x)^2}{(-x)^2 - 1}$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{(-x)^2}{(-x)^2 - 1}$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{(-x)^2}{(-x)^2 - 1}$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{(-x)^2}{(-x)^2 - 1}$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{(-x)^2}{(-x)^2 - 1}$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{(-x)^2}{(-x)^2 - 1}$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{(-x)^2}{(-x)^2 - 1}$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{(-x)^2}{(-x)^2 - 1}$
 $f(-x) = \frac{(-x)^2}{(-x)^2 - 1} =$

2. Let $f(x) = x \ln(x)$. Use the steps listed above to sketch a graph of the function.

$$\begin{array}{ll}
\lim_{\chi \to \infty} \chi \cdot \ln \chi = \infty \cdot \infty = \infty \\
\operatorname{Su}_{\chi \to \infty} \chi \cdot \ln \chi = \infty \cdot \infty = \infty
\end{array}$$

-.5-

3. Let $f(x) = x^4 - 2x^3 + x^2$. Use the steps listed above to sketch a graph of the function.

• Domain: all red numbers
• f(-x) =
$$(-x)^{4} - 2(x)^{3} + x^{4}$$

= $x^{4} + 1x^{4} + x^{4}$
= $y^{4} + 1x^{4} + x^{4}$
= $y^{4} + 1x^{4} + x^{4}$
= $2(x^{2} - (e \times 1/1))$
(H : lim $y^{4} - 2x^{3} + x^{2}$
= $\frac{1}{y^{4} - 0} x^{4} (1 - \frac{2}{x} + \frac{1}{x})$
= $\frac{1}{y^{4} - 0} x^{4} (1 - \frac{2}{x} + \frac{1}{x})$
= $\frac{1}{y^{4} - 0} x^{4} (1 - \frac{2}{x} + \frac{1}{x})$
= $\frac{1}{2} - \frac{1/2}{12} \approx .21^{1}$
and
= $\frac{1}{2} - \frac{1/2}{12} \approx .21^{1}$
and
= $\frac{1}{2} - \frac{1/2}{12} \approx .21^{1}$
and
= $\frac{1}{2} - \frac{1/2}{12} \approx .21^{1}$
(In the other always coil side
polynomial sio No VA
= $\frac{1}{2} - \frac{1/2}{12} \approx .21^{1}$
(In the other always coil side
 $y^{2} (x - 1)^{2} - 1)$
 $x^{2} (x^{2} - 2x + 1)$
 $y^{2} (x^{2} - 2x +$

More Practice from Textbook 5.4 You should do as many problems from each set (1-6, 7-12, 13-16, 17-24, 25-26, 37-42, 43-52), as needed until you are comfortable with these techniques. 37-42 are good practice for application problems.